BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25912087)

  • 1. The use of glial data in human health assessments of environmental contaminants.
    Kraft AD
    Toxicology; 2015 Jul; 333():127-136. PubMed ID: 25912087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival.
    Rose J; Brian C; Woods J; Pappa A; Panayiotidis MI; Powers R; Franco R
    Toxicology; 2017 Nov; 391():109-115. PubMed ID: 28655545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial cells in neurotoxicity development.
    Aschner M; Allen JW; Kimelberg HK; LoPachin RM; Streit WJ
    Annu Rev Pharmacol Toxicol; 1999; 39():151-73. PubMed ID: 10331080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system.
    James G; Butt AM
    Eur J Pharmacol; 2002 Jul; 447(2-3):247-60. PubMed ID: 12151016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.
    Thellung S; Gatta E; Pellistri F; Villa V; Corsaro A; Nizzari M; Robello M; Florio T
    Neurotox Res; 2017 Oct; 32(3):381-397. PubMed ID: 28540665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration.
    Kubik LL; Philbert MA
    Toxicol Sci; 2015 Mar; 144(1):7-16. PubMed ID: 25740792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informing 21st-Century Risk Assessments with 21st-Century Science.
    Birnbaum LS; Burke TA; Jones JJ
    Environ Health Perspect; 2016 Apr; 124(4):A60-3. PubMed ID: 27035154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of neurotoxicology.
    Tilson HA
    Curr Protoc Toxicol; 2001 May; Chapter 11():Unit11.1. PubMed ID: 20957638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.
    Frau L; Simola N; Porceddu PF; Morelli M
    Neurotoxicology; 2016 Sep; 56():127-138. PubMed ID: 27451954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes.
    Slotkin TA; Skavicus S; Card J; Levin ED; Seidler FJ
    Toxicology; 2016 Nov; 372():42-51. PubMed ID: 27816694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glial cells in manganese neurotoxicity.
    Filipov NM; Dodd CA
    J Appl Toxicol; 2012 May; 32(5):310-7. PubMed ID: 22120544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology.
    Thalakoti S; Patil VV; Damodaram S; Vause CV; Langford LE; Freeman SE; Durham PL
    Headache; 2007; 47(7):1008-23; discussion 24-5. PubMed ID: 17635592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17.
    Yang Y; Yang S; Guo J; Cui Y; Tang B; Li XJ; Li S
    J Neurosci; 2017 Sep; 37(38):9101-9115. PubMed ID: 28821675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management of glia-mediated neuroinflammation and related patents.
    Jha MK; Suk K
    Recent Pat Inflamm Allergy Drug Discov; 2014; 8(2):118-24. PubMed ID: 24948194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glia-neuron intercommunications and synaptic plasticity.
    Vernadakis A
    Prog Neurobiol; 1996 Jun; 49(3):185-214. PubMed ID: 8878303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotenone exerts developmental neurotoxicity in a human brain spheroid model.
    Pamies D; Block K; Lau P; Gribaldo L; Pardo CA; Barreras P; Smirnova L; Wiersma D; Zhao L; Harris G; Hartung T; Hogberg HT
    Toxicol Appl Pharmacol; 2018 Sep; 354():101-114. PubMed ID: 29428530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation.
    Dambach H; Hinkerohe D; Prochnow N; Stienen MN; Moinfar Z; Haase CG; Hufnagel A; Faustmann PM
    Epilepsia; 2014 Jan; 55(1):184-92. PubMed ID: 24299259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotoxicity of metal-containing nanoparticles and implications in glial cells.
    Chang X; Li J; Niu S; Xue Y; Tang M
    J Appl Toxicol; 2021 Jan; 41(1):65-81. PubMed ID: 32686875
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.