These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25912225)

  • 1. Frog volatile compounds: application of in vivo SPME for the characterization of the odorous secretions from two species of Hypsiboas treefrogs.
    Brunetti AE; Merib J; Carasek E; Caramão EB; Barbará J; Zini CA; Faivovich J
    J Chem Ecol; 2015 Apr; 41(4):360-72. PubMed ID: 25912225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Odorous secretions in anurans: morphological and functional assessment of serous glands as a source of volatile compounds in the skin of the treefrog Hypsiboas pulchellus (Amphibia: Anura: Hylidae).
    Brunetti AE; Hermida GN; Iurman MG; Faivovich J
    J Anat; 2016 Mar; 228(3):430-42. PubMed ID: 26555696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of volatile compounds profile of "Toscano" dry-cured ham during ripening as revealed by SPME-GC-MS approach.
    Pugliese C; Sirtori F; Calamai L; Franci O
    J Mass Spectrom; 2010 Sep; 45(9):1056-64. PubMed ID: 20799283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).
    Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F
    J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Time-Weighted Average Sampling of Odorous Volatile Organic Compounds in Air with Solid-Phase Microextraction Fiber Housed inside a GC Glass Liner: Proof of Concept.
    Tursumbayeva M; Koziel JA; Maurer DL; Kenessov B; Rice S
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of odorous volatile organic compounds between direct injection and solid-phase microextraction: development and validation of a gas chromatography-mass spectrometry-based methodology.
    Pandey SK; Kim KH
    J Chromatogr A; 2009 Jul; 1216(28):5436-44. PubMed ID: 19493534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions.
    Park MH; Jeong MK; Yeo J; Son HJ; Lim CL; Hong EJ; Noh BS; Lee J
    J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis.
    Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y
    J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2nd dimensional GC-MS analysis of sweat volatile organic compounds prepared by solid phase micro-extraction.
    Choi MJ; Oh CH
    Technol Health Care; 2014; 22(3):481-8. PubMed ID: 24763202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.
    Prades A; Assa RR; Dornier M; Pain JP; Boulanger R
    J Sci Food Agric; 2012 Sep; 92(12):2471-8. PubMed ID: 22692849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines.
    Canuti V; Conversano M; Calzi ML; Heymann H; Matthews MA; Ebeler SE
    J Chromatogr A; 2009 Apr; 1216(15):3012-22. PubMed ID: 19233370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.
    Xiao Z; Zhou X; Niu Y; Yu D; Zhu J; Zhu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 978-979():122-30. PubMed ID: 25544009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling and characterization of volatile secretions from the European stink bug Graphosoma lineatum (Heteroptera: Pentatomidae) by two-dimensional gas chromatography/time-of-flight mass spectrometry.
    Sanda M; Záček P; Streinz L; Dračínský M; Koutek B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jan; 881-882():69-75. PubMed ID: 22196834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties.
    Perestrelo R; Barros AS; Rocha SM; Câmara JS
    Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Robinson AL; Boss PK; Heymann H; Solomon PS; Trengove RD
    J Chromatogr A; 2011 Jan; 1218(3):504-17. PubMed ID: 21185026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical strategies based on multiple headspace extraction for the quantitative analysis of aroma components in mushrooms.
    San Román I; Alonso ML; Bartolomé L; Alonso RM; Fañanás R
    Talanta; 2014 Jun; 123():207-17. PubMed ID: 24725884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of characteristic odorants from Harmonia axyridis beetles using in vivo solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry.
    Cai L; Koziel JA; O'Neal ME
    J Chromatogr A; 2007 Apr; 1147(1):66-78. PubMed ID: 17359983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions.
    Dormont L; Bessière JM; McKey D; Cohuet A
    J Exp Biol; 2013 Aug; 216(Pt 15):2783-8. PubMed ID: 23580718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers.
    Silva I; Rocha SM; Coimbra MA
    Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS).
    Du X; Rouseff R
    J Agric Food Chem; 2014 May; 62(20):4537-43. PubMed ID: 24758568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.