BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25912336)

  • 1. More conditioning stimuli enhance synaptic plasticity in the human spinal cord.
    Fitzpatrick SC; Luu BL; Butler JE; Taylor JL
    Clin Neurophysiol; 2016 Jan; 127(1):724-731. PubMed ID: 25912336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans.
    Dongés SC; D'Amico JM; Butler JE; Taylor JL
    J Neurophysiol; 2018 Feb; 119(2):652-661. PubMed ID: 29118196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
    Grover FM; Chen B; Perez MA
    J Neurophysiol; 2023 Jun; 129(6):1414-1422. PubMed ID: 36752493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway.
    Taylor JL; Martin PG
    J Neurosci; 2009 Sep; 29(37):11708-16. PubMed ID: 19759317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensity dependency of peripheral nerve stimulation in spinal LTP induced by paired associative corticospinal-motoneuronal stimulation (PCMS).
    Yamashita A; Murakami T; Hattori N; Miyai I; Ugawa Y
    PLoS One; 2021; 16(11):e0259931. PubMed ID: 34793533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway-specific plasticity in the human spinal cord.
    Leukel C; Taube W; Beck S; Schubert M
    Eur J Neurosci; 2012 May; 35(10):1622-9. PubMed ID: 22487124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2018 Jan; 119(1):369-376. PubMed ID: 29046429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation.
    Shulga A; Lioumis P; Kirveskari E; Savolainen S; Mäkelä JP; Ylinen A
    J Neurosci Methods; 2015 Mar; 242():112-7. PubMed ID: 25597909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired corticomotoneuronal stimulation of the preactivated ankle dorsiflexor: an open-label study of magnetic and electrical painless protocols.
    Provencher J; Schneider C
    Exp Brain Res; 2023 Feb; 241(2):629-647. PubMed ID: 36637488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
    Nuzzo JL; Trajano GS; Barry BK; Gandevia SC; Taylor JL
    J Neurophysiol; 2016 Apr; 115(4):2076-82. PubMed ID: 26864764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory drive to spinal motoneurones is necessary for serotonin to modulate motoneurone excitability via 5-HT
    Henderson TT; Taylor JL; Thorstensen JR; Kavanagh JJ
    Eur J Neurosci; 2024 Jan; 59(1):17-35. PubMed ID: 37994250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.