BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25912448)

  • 1. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.
    Hayakawa K; Kajihata S; Matsuda F; Shimizu H
    J Biosci Bioeng; 2015 Nov; 120(5):532-8. PubMed ID: 25912448
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Hayakawa K; Matsuda F; Shimizu H
    Microb Cell Fact; 2018 May; 17(1):82. PubMed ID: 29855316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production.
    Hayakawa K; Matsuda F; Shimizu H
    AMB Express; 2016 Dec; 6(1):38. PubMed ID: 27277079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced S-adenosyl-l-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation.
    Huang Y; Gou X; Hu H; Xu Q; Lu Y; Cheng J
    J Appl Microbiol; 2012 Apr; 112(4):683-94. PubMed ID: 22313745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.
    Chen H; Wang Z; Wang Z; Dou J; Zhou C
    World J Microbiol Biotechnol; 2016 Apr; 32(4):56. PubMed ID: 26925618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.
    Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z
    J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving ATP availability by sod1 deletion with a strategy of precursor feeding enhanced S-adenosyl-L-methionine accumulation in Saccharomyces cerevisiae.
    Hu ZC; Zheng CM; Tao YC; Wang SN; Wang YS; Liu ZQ; Zheng YG
    Enzyme Microb Technol; 2023 Mar; 164():110189. PubMed ID: 36586225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative
    Yatabe F; Okahashi N; Seike T; Matsuda F
    Biotechnol J; 2022 Mar; 17(3):e2000438. PubMed ID: 33983677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae).
    Chen Y; Tan T
    J Agric Food Chem; 2018 May; 66(20):5200-5209. PubMed ID: 29722539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of S-adenosyl-methionine accumulation on hineka odor in sake brewed with a non-Kyokai yeast.
    Shibata Y; Yamada T; Ikeda Y; Kanai M; Fujii T; Akao T; Goshima T; Isogai A; Takahashi T
    J Biosci Bioeng; 2024 Apr; 137(4):268-273. PubMed ID: 38310037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production.
    Hu ZC; Tao YC; Pan JC; Zheng CM; Wang YS; Xue YP; Liu ZQ; Zheng YG
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1450-1463. PubMed ID: 37418127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering.
    Dong C; Schultz JC; Liu W; Lian J; Huang L; Xu Z; Zhao H
    Metab Eng; 2021 Jul; 66():319-327. PubMed ID: 33713797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of feeding pre-L-methionine on high-cell-density fermentation for S-adenosyl-L-methionine production].
    Liu PY; Dong HZ; Tan TW
    Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):268-72. PubMed ID: 16607955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of S-adenosyl-l-methionine from dl-methionine in metabolic engineered Saccharomyces cerevisiae.
    Liu W; Tang D; Shi R; Lian J; Huang L; Cai J; Xu Z
    Biotechnol Bioeng; 2019 Dec; 116(12):3312-3323. PubMed ID: 31478186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cofactor engineering strategy for enhanced S-adenosylmethionine production in Saccharomyces cerevisiae].
    Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):246-254. PubMed ID: 29424138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced synthesis of S-adenosyl-L-methionine through combinatorial metabolic engineering and Bayesian optimization in Saccharomyces cerevisiae.
    Xiao W; Shi X; Huang H; Wang X; Liang W; Xu J; Liu F; Zhang X; Xu G; Shi J; Xu Z
    Biotechnol J; 2024 Mar; 19(3):e2300650. PubMed ID: 38479990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pre-L-methionine feeding strategy for S-adenosyl-L-methionine fermentative production].
    Wang J; Tan T
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1824-7. PubMed ID: 19149199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA
    Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enhancement of the production of SAM by overexpression of SAM synthetase in Pichia pastoris].
    Yu ZL; Wu XJ; Li DY; Yang S; Zhou Z; Cai J; Yuan ZY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Feb; 35(2):127-32. PubMed ID: 12545218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.