These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25912651)

  • 1. Structural organization of human replication timing domains.
    Boulos RE; Drillon G; Argoul F; Arneodo A; Audit B
    FEBS Lett; 2015 Oct; 589(20 Pt A):2944-57. PubMed ID: 25912651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large replication skew domains delimit GC-poor gene deserts in human.
    Zaghloul L; Drillon G; Boulos RE; Argoul F; Thermes C; Arneodo A; Audit B
    Comput Biol Chem; 2014 Dec; 53 Pt A():153-65. PubMed ID: 25224847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.
    Audit B; Zaghloul L; Baker A; Arneodo A; Chen CL; d'Aubenton-Carafa Y; Thermes C
    Subcell Biochem; 2013; 61():57-80. PubMed ID: 23150246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency.
    Julienne H; Audit B; Arneodo A
    PLoS Comput Biol; 2015 Feb; 11(2):e1003969. PubMed ID: 25658386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From simple bacterial and archaeal replicons to replication N/U-domains.
    Hyrien O; Rappailles A; Guilbaud G; Baker A; Chen CL; Goldar A; Petryk N; Kahli M; Ma E; d'Aubenton-Carafa Y; Audit B; Thermes C; Arneodo A
    J Mol Biol; 2013 Nov; 425(23):4673-89. PubMed ID: 24095859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication Domains: Genome Compartmentalization into Functional Replication Units.
    Zhao PA; Rivera-Mulia JC; Gilbert DM
    Adv Exp Med Biol; 2017; 1042():229-257. PubMed ID: 29357061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human genome replication proceeds through four chromatin states.
    Julienne H; Zoufir A; Audit B; Arneodo A
    PLoS Comput Biol; 2013; 9(10):e1003233. PubMed ID: 24130466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and epigenetic determinants of DNA replication origins, position and activation.
    Méchali M; Yoshida K; Coulombe P; Pasero P
    Curr Opin Genet Dev; 2013 Apr; 23(2):124-31. PubMed ID: 23541525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: nuclear lamins--structural proteins with fundamental functions.
    Gruenbaum Y; Wilson KL; Harel A; Goldberg M; Cohen M
    J Struct Biol; 2000 Apr; 129(2-3):313-23. PubMed ID: 10806082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin remodelling and DNA replication: from nucleosomes to loop domains.
    Demeret C; Vassetzky Y; Méchali M
    Oncogene; 2001 May; 20(24):3086-93. PubMed ID: 11420724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing.
    Dileep V; Rivera-Mulia JC; Sima J; Gilbert DM
    Cold Spring Harb Symp Quant Biol; 2015; 80():53-63. PubMed ID: 26590169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of DNA replication timing in the 3D genome.
    Marchal C; Sima J; Gilbert DM
    Nat Rev Mol Cell Biol; 2019 Dec; 20(12):721-737. PubMed ID: 31477886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program.
    Dileep V; Ay F; Sima J; Vera DL; Noble WS; Gilbert DM
    Genome Res; 2015 Aug; 25(8):1104-13. PubMed ID: 25995270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program.
    Renard-Guillet C; Kanoh Y; Shirahige K; Masai H
    Semin Cell Dev Biol; 2014 Jun; 30():110-20. PubMed ID: 24727367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear architecture and chromatin structure on the path to cancer.
    Göndör A
    Semin Cancer Biol; 2013 Apr; 23(2):63-4. PubMed ID: 23454238
    [No Abstract]   [Full Text] [Related]  

  • 19. From gene to chromosome: organization levels defined by the interplay of transcription and replication in vertebrates.
    Herbomel P
    New Biol; 1990 Nov; 2(11):937-45. PubMed ID: 2101632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types.
    Ryba T; Hiratani I; Lu J; Itoh M; Kulik M; Zhang J; Schulz TC; Robins AJ; Dalton S; Gilbert DM
    Genome Res; 2010 Jun; 20(6):761-70. PubMed ID: 20430782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.