These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25912908)
21. The Athlete's Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise. Ludyga S; Gronwald T; Hottenrott K Neural Plast; 2016; 2016():4583674. PubMed ID: 26819767 [TBL] [Abstract][Full Text] [Related]
22. Influence of high-intensity interval training on adaptations in well-trained cyclists. Laursen PB; Shing CM; Peake JM; Coombes JS; Jenkins DG J Strength Cond Res; 2005 Aug; 19(3):527-33. PubMed ID: 16095414 [TBL] [Abstract][Full Text] [Related]
23. High-intensity Interval Training in the Boundaries of the Severe Domain: Effects on Sprint and Endurance Performance. Turnes T; de Aguiar RA; de Oliveira Cruz RS; Pereira K; Salvador AF; Caputo F Int J Sports Med; 2016 Nov; 37(12):944-951. PubMed ID: 27551939 [TBL] [Abstract][Full Text] [Related]
24. Do Male And Female Cyclists' Cortical Activity Differ Before and During Cycling Exercise? Ludyga S; Gronwald T; Hottenrott K J Sport Exerc Psychol; 2015 Dec; 37(6):617-25. PubMed ID: 26866769 [TBL] [Abstract][Full Text] [Related]
25. Optimizing strength training for running and cycling endurance performance: A review. Rønnestad BR; Mujika I Scand J Med Sci Sports; 2014 Aug; 24(4):603-12. PubMed ID: 23914932 [TBL] [Abstract][Full Text] [Related]
26. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Puype J; Van Proeyen K; Raymackers JM; Deldicque L; Hespel P Med Sci Sports Exerc; 2013 Nov; 45(11):2166-74. PubMed ID: 23604068 [TBL] [Abstract][Full Text] [Related]
27. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Neal CM; Hunter AM; Brennan L; O'Sullivan A; Hamilton DL; De Vito G; Galloway SD J Appl Physiol (1985); 2013 Feb; 114(4):461-71. PubMed ID: 23264537 [TBL] [Abstract][Full Text] [Related]
28. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men. Ferguson C; Wylde LA; Benson AP; Cannon DT; Rossiter HB J Appl Physiol (1985); 2016 Jan; 120(1):70-7. PubMed ID: 26565019 [TBL] [Abstract][Full Text] [Related]
29. Aerobic and anaerobic power characteristics of off-road cyclists. Baron R Med Sci Sports Exerc; 2001 Aug; 33(8):1387-93. PubMed ID: 11474343 [TBL] [Abstract][Full Text] [Related]
30. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Halson SL; Bartram J; West N; Stephens J; Argus CK; Driller MW; Sargent C; Lastella M; Hopkins WG; Martin DT Med Sci Sports Exerc; 2014 Aug; 46(8):1631-9. PubMed ID: 24504431 [TBL] [Abstract][Full Text] [Related]
31. Relationship between strength level and pedal rate. Bieuzen F; Vercruyssen F; Hausswirth C; Brisswalter J Int J Sports Med; 2007 Jul; 28(7):585-9. PubMed ID: 17357963 [TBL] [Abstract][Full Text] [Related]
33. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Marsh AP; Martin PE; Foley KO Med Sci Sports Exerc; 2000 Sep; 32(9):1630-4. PubMed ID: 10994916 [TBL] [Abstract][Full Text] [Related]
34. Effect of Cadence on Time Trial Performance in Recreational Female Cyclists. Graham PL; Zoeller RF; Jacobs PL; Whitehurst MA J Strength Cond Res; 2018 Jun; 32(6):1739-1744. PubMed ID: 29786630 [TBL] [Abstract][Full Text] [Related]
35. Cadence-power-relationship during decisive mountain ascents at the Tour de France. Vogt S; Roecker K; Schumacher YO; Pottgiesser T; Dickhuth HH; Schmid A; Heinrich L Int J Sports Med; 2008 Mar; 29(3):244-50. PubMed ID: 17990203 [TBL] [Abstract][Full Text] [Related]
36. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Vikmoen O; Ellefsen S; Trøen Ø; Hollan I; Hanestadhaugen M; Raastad T; Rønnestad BR Scand J Med Sci Sports; 2016 Apr; 26(4):384-96. PubMed ID: 25892654 [TBL] [Abstract][Full Text] [Related]
37. Effect of aerobic training status on both maximal lactate steady state and critical power. Greco CC; Caritá RA; Dekerle J; Denadai BS Appl Physiol Nutr Metab; 2012 Aug; 37(4):736-43. PubMed ID: 22680338 [TBL] [Abstract][Full Text] [Related]
38. Which factors determine the freely chosen cadence during submaximal cycling? Vercruyssen F; Brisswalter J J Sci Med Sport; 2010 Mar; 13(2):225-31. PubMed ID: 19342296 [TBL] [Abstract][Full Text] [Related]
39. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. Ziemann E; Grzywacz T; Łuszczyk M; Laskowski R; Olek RA; Gibson AL J Strength Cond Res; 2011 Apr; 25(4):1104-12. PubMed ID: 20661160 [TBL] [Abstract][Full Text] [Related]
40. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Chtara M; Chamari K; Chaouachi M; Chaouachi A; Koubaa D; Feki Y; Millet GP; Amri M Br J Sports Med; 2005 Aug; 39(8):555-60. PubMed ID: 16046343 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]