These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25912910)

  • 21. Effects of Ag(I), Au(III), and Cu(II) on the reductive dechlorination of carbon tetrachloride by green rust.
    O'Loughlin EJ; Kemner KM; Burris DR
    Environ Sci Technol; 2003 Jul; 37(13):2905-12. PubMed ID: 12875393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled reduction of chlorinated hydrocarbons and heavy metals by zerovalent silicon.
    Doong RA; Lee CC; Chen KT; Wu SF
    Water Sci Technol; 2004; 50(8):89-96. PubMed ID: 15566191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-Sulfide-Associated Products Formed during Reductive Dechlorination of Carbon Tetrachloride.
    Lan Y; Butler EC
    Environ Sci Technol; 2016 Jun; 50(11):5489-97. PubMed ID: 27138348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive dechlorination of chlorinated methanes in cement slurries containing Fe(II).
    Hwang I; Batchelor B
    Chemosphere; 2002 Sep; 48(10):1019-27. PubMed ID: 12227506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of carbon tetrachloride in the presence of zero-valent iron.
    Alvarado JS; Rose C; Lafreniere L
    J Environ Monit; 2010 Aug; 12(8):1524-30. PubMed ID: 20596593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of amine buffers on carbon tetrachloride reductive dechlorination by the iron oxide magnetite.
    Danielsen KM; Gland JL; Hayes KF
    Environ Sci Technol; 2005 Feb; 39(3):756-63. PubMed ID: 15757336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension.
    Che H; Lee W
    Chemosphere; 2011 Feb; 82(8):1103-8. PubMed ID: 21186044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system.
    Xu M; Gu X; Lu S; Qiu Z; Sui Q; Miao Z; Zang X; Wu X
    J Hazard Mater; 2015 Apr; 286():7-14. PubMed ID: 25544995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH dependence of carbon tetrachloride reductive dechlorination by magnetite.
    Danielsen KM; Hayes KF
    Environ Sci Technol; 2004 Sep; 38(18):4745-52. PubMed ID: 15487782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced remediation of carbon tetrachloride by Fe(II)-Fe(III) systems in the presence of copper ions.
    Maithreepala RA; Doong RA
    Water Sci Technol; 2004; 50(8):161-8. PubMed ID: 15566199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Catalytic reduction of CCl4 in water by Fe0 and amended Fe0].
    Wu DL; Wang HW; Fan JH; Ma LM
    Huan Jing Ke Xue; 2008 Dec; 29(12):3433-8. PubMed ID: 19256381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles.
    McCormick ML; Adriaens P
    Environ Sci Technol; 2004 Feb; 38(4):1045-53. PubMed ID: 14998017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-doped biochar-catalyzed dechlorination of carbon tetrachloride in sulfide-containing aqueous solutions: Performances, mechanisms and pathways.
    Ding L; Wang Y; Tong L; Liu N; Wang C; Hu Q
    Water Res; 2022 Sep; 223():119006. PubMed ID: 36027765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid.
    Jung CH; Wells WW
    Arch Biochem Biophys; 1998 Jul; 355(1):9-14. PubMed ID: 9647661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.
    Yang J; Meng L; Guo L
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of soil minerals on the rates and products of abiotic transformation of carbon tetrachloride in anaerobic soils and sediments.
    Shao H; Butler EC
    Environ Sci Technol; 2009 Mar; 43(6):1896-901. PubMed ID: 19368189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite.
    Hanoch RJ; Shao H; Butler EC
    Chemosphere; 2006 Apr; 63(2):323-34. PubMed ID: 16154172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites.
    Neumann A; Hofstetter TB; Skarpeli-Liati M; Schwarzenbach RP
    Environ Sci Technol; 2009 Jun; 43(11):4082-9. PubMed ID: 19569334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent.
    Smith BA; Teel AL; Watts RJ
    J Contam Hydrol; 2006 May; 85(3-4):229-46. PubMed ID: 16546290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.