These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25913529)

  • 21. A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis.
    Chen L; Zhang C; Yadav V; Wong A; Senapati S; Chang HC
    Sci Rep; 2023 Jan; 13(1):184. PubMed ID: 36604528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device.
    Peng L; Yang M; Guo SS; Liu W; Zhao XZ
    Biomed Microdevices; 2011 Jun; 13(3):559-64. PubMed ID: 21484446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
    Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA
    Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants.
    Tuček J; Slouka Z; Přibyl M
    Electrophoresis; 2018 Dec; 39(23):2997-3005. PubMed ID: 30187500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermo-responsive fluorinated surfactant for on-demand demulsification of microfluidic droplets.
    An C; Zhang Y; Li H; Zhang H; Zhang Y; Wang J; Zhang Y; Cheng F; Sun K; Wang H
    Lab Chip; 2021 Sep; 21(18):3412-3419. PubMed ID: 34472548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process.
    Wang K; Lu YC; Xu JH; Luo GS
    Langmuir; 2009 Feb; 25(4):2153-8. PubMed ID: 19152256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE; Chiu DT
    Lab Chip; 2010 Jul; 10(14):1873-7. PubMed ID: 20467690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip dilution in nanoliter droplets.
    Thakur R; Amin AM; Wereley S
    Analyst; 2015 Sep; 140(17):5855-9. PubMed ID: 26196035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous generation of multiple aqueous droplets in a microfluidic device.
    Lorenz RM; Fiorini GS; Jeffries GD; Lim DS; He M; Chiu DT
    Anal Chim Acta; 2008 Dec; 630(2):124-30. PubMed ID: 19012823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluidic conduits for highly efficient purification of target species in EWOD-driven droplet microfluidics.
    Shah GJ; Kim CJ
    Lab Chip; 2009 Aug; 9(16):2402-5. PubMed ID: 19636474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.
    Resto PJ; Mogen BJ; Berthier E; Williams JC
    Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration.
    Zhang H; Zhang L; An C; Zhang Y; Shao F; Gao Y; Zhang Y; Li H; Zhang Y; Ren C; Sun K; He W; Cheng F; Wang H; Weitz DA
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35593920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic exploration of the phase diagram of a surfactant/water binary system.
    Leng J; Joanicot M; Ajdari A
    Langmuir; 2007 Feb; 23(5):2315-7. PubMed ID: 17266344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants.
    Usui Y; Sasaki N
    Anal Sci; 2016; 32(1):109-11. PubMed ID: 26753715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes.
    Lin S; Wang W; Ju XJ; Xie R; Liu Z; Yu HR; Zhang C; Chu LY
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2023-8. PubMed ID: 26858435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.