BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25913535)

  • 1. Abiotic soil changes induced by engineered nanomaterials: A critical review.
    Dror I; Yaron B; Berkowitz B
    J Contam Hydrol; 2015 Oct; 181():3-16. PubMed ID: 25913535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.
    von der Kammer F; Ferguson PL; Holden PA; Masion A; Rogers KR; Klaine SJ; Koelmans AA; Horne N; Unrine JM
    Environ Toxicol Chem; 2012 Jan; 31(1):32-49. PubMed ID: 22021021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microchemical contaminants as forming agents of anthropogenic soils.
    Dror I; Yaron B; Berkowitz B
    Ambio; 2017 Feb; 46(1):109-120. PubMed ID: 27344323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimedia environmental distribution of engineered nanomaterials.
    Liu HH; Cohen Y
    Environ Sci Technol; 2014 Mar; 48(6):3281-92. PubMed ID: 24548277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments.
    Gardea-Torresdey JL; Rico CM; White JC
    Environ Sci Technol; 2014; 48(5):2526-40. PubMed ID: 24499408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.
    Conway JR; Keller AA
    Water Res; 2016 Jul; 98():250-60. PubMed ID: 27108211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis.
    Adam V; Caballero-Guzman A; Nowack B
    Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.
    Garner KL; Suh S; Keller AA
    Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching for global descriptors of engineered nanomaterial fate and transport in the environment.
    Westerhoff P; Nowack B
    Acc Chem Res; 2013 Mar; 46(3):844-53. PubMed ID: 22950943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental behavior of engineered nanomaterials in porous media: a review.
    Park CM; Chu KH; Heo J; Her N; Jang M; Son A; Yoon Y
    J Hazard Mater; 2016 May; 309():133-50. PubMed ID: 26882524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants.
    Neale PA; Jämting ÅK; Escher BI; Herrmann J
    Water Sci Technol; 2013; 68(7):1440-53. PubMed ID: 24135091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial Transformation in the Soil-Plant System: Implications for Food Safety and Application in Agriculture.
    Zhang P; Guo Z; Zhang Z; Fu H; White JC; Lynch I
    Small; 2020 May; 16(21):e2000705. PubMed ID: 32462786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment.
    Kansara K; Bolan S; Radhakrishnan D; Palanisami T; Al-Muhtaseb AH; Bolan N; Vinu A; Kumar A; Karakoti A
    Environ Pollut; 2022 Mar; 296():118726. PubMed ID: 34953948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing Engineered TiO
    Bland GD; Battifarano M; Pradas Del Real AE; Sarret G; Lowry GV
    Environ Sci Technol; 2022 Mar; 56(5):2990-3001. PubMed ID: 35133134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.