These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25913604)

  • 1. Transient solid-fluid interactions in rat brain tissue under combined translational shear and fixed compression.
    Haslach HW; Leahy LN; Hsieh AH
    J Mech Behav Biomed Mater; 2015 Aug; 48():12-27. PubMed ID: 25913604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.
    Haslach HW; Gipple JM; Leahy LN
    J Mech Behav Biomed Mater; 2017 Apr; 68():88-102. PubMed ID: 28157598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-extracellular fluid interaction and damage in the mechanical response of rat brain tissue under confined compression.
    Haslach HW; Leahy LN; Riley P; Gullapalli R; Xu S; Hsieh AH
    J Mech Behav Biomed Mater; 2014 Jan; 29():138-50. PubMed ID: 24084652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage to the rat cerebrum under in vitro sinusoidal translational shear deformation.
    Gipple JM; Haslach HW
    J Mech Behav Biomed Mater; 2020 Oct; 110():103969. PubMed ID: 32739843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization.
    Li LP; Herzog W
    J Biomech; 2004 Mar; 37(3):375-82. PubMed ID: 14757457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress.
    Wang P; Yang L; Hsieh AH
    Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests.
    Wu JZ; Dong RG; Schopper AW
    J Biomech; 2004 Jan; 37(1):147-55. PubMed ID: 14672579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive stress relaxation behavior of articular cartilage and its effects on fluid pressure and solid displacement due to non-Newtonian flow.
    Farooq U; Siddique JI
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):161-172. PubMed ID: 33017177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the mechanical behaviour of brain tissue in compression and shear.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2008; 45(6):663-76. PubMed ID: 19065013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial fluid-solid interaction within aneurysmal and non-pathological human ascending aortic tissue under translational sinusoidal shear deformation.
    Haslach HW; Gipple J; Harwerth J; Rabin J
    Acta Biomater; 2020 Sep; 113():452-463. PubMed ID: 32645439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    J Mech Behav Biomed Mater; 2020 Feb; 102():103475. PubMed ID: 31627069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the unconfined compression of articular cartilage.
    Armstrong CG; Lai WM; Mow VC
    J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate-dependent constitutive modeling of brain tissue.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    Biomech Model Mechanobiol; 2020 Apr; 19(2):621-632. PubMed ID: 31612343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.