BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25913608)

  • 1. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading.
    Purcell P; Tiernan S; McEvoy F; Morris S
    J Mech Behav Biomed Mater; 2015 Aug; 48():51-59. PubMed ID: 25913608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone.
    Makiyama AM; Vajjhala S; Gibson LJ
    J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity in the fatigue behavior of trabecular bone across site and species.
    Haddock SM; Yeh OC; Mummaneni PV; Rosenberg WS; Keaveny TM
    J Biomech; 2004 Feb; 37(2):181-7. PubMed ID: 14706320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive creep behavior of bovine trabecular bone.
    Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bone damage on creep behaviours of human vertebral trabeculae.
    O'Callaghan P; Szarko M; Wang Y; Luo J
    Bone; 2018 Jan; 106():204-210. PubMed ID: 29081379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear strength of the human lumbar spine.
    Skrzypiec DM; Klein A; Bishop NE; Stahmer F; PĆ¼schel K; Seidel H; Morlock MM; Huber G
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):646-51. PubMed ID: 22578739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.