These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25913608)

  • 1. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading.
    Purcell P; Tiernan S; McEvoy F; Morris S
    J Mech Behav Biomed Mater; 2015 Aug; 48():51-59. PubMed ID: 25913608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone.
    Makiyama AM; Vajjhala S; Gibson LJ
    J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity in the fatigue behavior of trabecular bone across site and species.
    Haddock SM; Yeh OC; Mummaneni PV; Rosenberg WS; Keaveny TM
    J Biomech; 2004 Feb; 37(2):181-7. PubMed ID: 14706320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive creep behavior of bovine trabecular bone.
    Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bone damage on creep behaviours of human vertebral trabeculae.
    O'Callaghan P; Szarko M; Wang Y; Luo J
    Bone; 2018 Jan; 106():204-210. PubMed ID: 29081379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear strength of the human lumbar spine.
    Skrzypiec DM; Klein A; Bishop NE; Stahmer F; PĆ¼schel K; Seidel H; Morlock MM; Huber G
    Clin Biomech (Bristol); 2012 Aug; 27(7):646-51. PubMed ID: 22578739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.