These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 25913852)
1. Proteomic identification of mitochondrial carbonylated proteins in two maturation stages of pepper fruits. Camejo D; Jiménez A; Palma JM; Sevilla F Proteomics; 2015 Aug; 15(15):2634-42. PubMed ID: 25913852 [TBL] [Abstract][Full Text] [Related]
2. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. Qin G; Meng X; Wang Q; Tian S J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. González-Gordo S; Rodríguez-Ruiz M; Paradela A; Ramos-Fernández A; Corpas FJ; Palma JM J Plant Physiol; 2022 Jul; 274():153734. PubMed ID: 35667195 [TBL] [Abstract][Full Text] [Related]
4. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Chaki M; Álvarez de Morales P; Ruiz C; Begara-Morales JC; Barroso JB; Corpas FJ; Palma JM Ann Bot; 2015 Sep; 116(4):637-47. PubMed ID: 25814060 [TBL] [Abstract][Full Text] [Related]
5. Heteromeric Geranylgeranyl Diphosphate Synthase Contributes to Carotenoid Biosynthesis in Ripening Fruits of Red Pepper ( Capsicum annuum var. conoides). Wang Q; Huang XQ; Cao TJ; Zhuang Z; Wang R; Lu S J Agric Food Chem; 2018 Nov; 66(44):11691-11700. PubMed ID: 30339374 [TBL] [Abstract][Full Text] [Related]
6. Effect of different ripening conditions on pigments of pepper for paprika production at green stage of maturity. Kevrešan ŽS; Mastilović JS; Mandić AI; Torbica AM J Agric Food Chem; 2013 Sep; 61(38):9125-30. PubMed ID: 23924049 [TBL] [Abstract][Full Text] [Related]
7. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. González-Gordo S; López-Jaramillo J; Rodríguez-Ruiz M; Taboada J; Palma JM; Corpas FJ Biochem J; 2024 Jul; 481(13):883-901. PubMed ID: 38884605 [TBL] [Abstract][Full Text] [Related]
8. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. Sánchez-Bel P; Egea I; Sánchez-Ballesta MT; Martinez-Madrid C; Fernandez-Garcia N; Romojaro F; Olmos E; Estrella E; Bolarín MC; Flores FB J Proteomics; 2012 Sep; 75(17):5463-78. PubMed ID: 22796354 [TBL] [Abstract][Full Text] [Related]
9. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions. Bollineni RC; Hoffmann R; Fedorova M Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318 [TBL] [Abstract][Full Text] [Related]
10. Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development. Liu Z; Lv J; Zhang Z; Li H; Yang B; Chen W; Dai X; Li X; Yang S; Liu L; Ou L; Ma Y; Zou X J Proteome Res; 2019 Mar; 18(3):982-994. PubMed ID: 30650966 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Qin G; Wang Q; Liu J; Li B; Tian S Proteomics; 2009 Sep; 9(17):4241-53. PubMed ID: 19688753 [TBL] [Abstract][Full Text] [Related]
13. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH. Zhang H; He D; Yu J; Li M; Damaris RN; Gupta R; Kim ST; Yang P Proteomics; 2016 Mar; 16(6):989-1000. PubMed ID: 26801057 [TBL] [Abstract][Full Text] [Related]
14. Proteomic identification of technologically modified proteins in malt by combination of protein fractionation using convective interaction media and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bobalova J; Chmelik J J Chromatogr A; 2007 Sep; 1163(1-2):80-5. PubMed ID: 17586515 [TBL] [Abstract][Full Text] [Related]
15. Chlorophyll catabolism pathway in fruits of Capsicum annuum (L.): stay-green versus red fruits. Roca M; Mínguez-Mosquera MI J Agric Food Chem; 2006 May; 54(11):4035-40. PubMed ID: 16719531 [TBL] [Abstract][Full Text] [Related]
16. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages. Prinsi B; Negri AS; Fedeli C; Morgutti S; Negrini N; Cocucci M; Espen L Phytochemistry; 2011 Jul; 72(10):1251-62. PubMed ID: 21315381 [TBL] [Abstract][Full Text] [Related]
17. A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Lee JM; Kim S; Lee JY; Yoo EY; Cho MC; Cho MR; Kim BD; Bahk YY Proteomics; 2006 Oct; 6(19):5248-59. PubMed ID: 16947123 [TBL] [Abstract][Full Text] [Related]
18. Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Martí MC; Camejo D; Olmos E; Sandalio LM; Fernández-García N; Jiménez A; Sevilla F Plant Biol (Stuttg); 2009 Jul; 11(4):613-24. PubMed ID: 19538399 [TBL] [Abstract][Full Text] [Related]
19. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production. Loei H; Lim J; Tan M; Lim TK; Lin QS; Chew FT; Kulaveerasingam H; Chung MC J Proteome Res; 2013 Nov; 12(11):5096-109. PubMed ID: 24083564 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. Wu X; Jiang L; Yu M; An X; Ma R; Yu Z J Proteomics; 2016 Sep; 147():197-211. PubMed ID: 27288903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]