These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25914180)

  • 21. Yellow fever 5' noncoding region as a potential element to improve hepatitis C virus production through modification of translational control.
    Malet I; Wychowski C; Huraux JM; Agut H; Cahour A
    Biochem Biophys Res Commun; 1998 Dec; 253(2):257-64. PubMed ID: 9878525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cap-assisted internal initiation of translation of histone H4.
    Martin F; Barends S; Jaeger S; Schaeffer L; Prongidi-Fix L; Eriani G
    Mol Cell; 2011 Jan; 41(2):197-209. PubMed ID: 21255730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational regulation via 5' mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3h.
    Kim TH; Kim BH; Yahalom A; Chamovitz DA; von Arnim AG
    Plant Cell; 2004 Dec; 16(12):3341-56. PubMed ID: 15548739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(dT) inhibition of globin synthesis in the rabbit reticulocyte lysate system. Reversal of the inhibition by poly(dT)-binding protein.
    Suzuki H; Mukouyama EB
    J Biochem; 1982 Jun; 91(6):1981-94. PubMed ID: 7118858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation.
    Kieft JS; Zhou K; Grech A; Jubin R; Doudna JA
    Nat Struct Biol; 2002 May; 9(5):370-4. PubMed ID: 11927953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition by suramin of protein synthesis in vitro. Ribosomes as the target of the drug.
    Brigotti M; Alfieri RR; Petronini PG; Carnicelli D
    Biochimie; 2006 May; 88(5):497-503. PubMed ID: 16386828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosomal protein S5e is implicated in translation initiation through its interaction with the N-terminal domain of initiation factor eIF2α.
    Sharifulin D; Babaylova E; Kossinova O; Bartuli Y; Graifer D; Karpova G
    Chembiochem; 2013 Nov; 14(16):2136-43. PubMed ID: 24106102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA.
    Kaminski A; Hunt SL; Patton JG; Jackson RJ
    RNA; 1995 Nov; 1(9):924-38. PubMed ID: 8548657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors.
    Andreev DE; Terenin IM; Dunaevsky YE; Dmitriev SE; Shatsky IN
    Mol Cell Biol; 2006 Apr; 26(8):3164-9. PubMed ID: 16581790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes.
    Penzo M; Carnicelli D; Montanaro L; Brigotti M
    Nat Protoc; 2016 Jul; 11(7):1309-25. PubMed ID: 27336708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Affinity purification of eukaryotic 48S initiation complexes.
    Locker N; Easton LE; Lukavsky PJ
    RNA; 2006 Apr; 12(4):683-90. PubMed ID: 16484374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events.
    Menschaert G; Van Criekinge W; Notelaers T; Koch A; Crappé J; Gevaert K; Van Damme P
    Mol Cell Proteomics; 2013 Jul; 12(7):1780-90. PubMed ID: 23429522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberration in translation initiation and associated diseases: Role of the eukaryotic translation initiation factor 3A.
    Zhu T; Gao Y; Li L; Wang L; Yin J; Zhou H; Zhang W; Liu Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Oct; 42(10):1204-1211. PubMed ID: 29093254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Appraisal of the Missing Proteins Based on the mRNAs Bound to Ribosomes.
    Xu S; Zhou R; Ren Z; Zhou B; Lin Z; Hou G; Deng Y; Zi J; Lin L; Wang Q; Liu X; Xu X; Wen B; Liu S
    J Proteome Res; 2015 Dec; 14(12):4976-84. PubMed ID: 26500078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro reconstitution of translational arrest pathways.
    Feng Q; Shao S
    Methods; 2018 Mar; 137():20-36. PubMed ID: 29277545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P).
    Aviner R; Geiger T; Elroy-Stein O
    Nat Protoc; 2014 Apr; 9(4):751-60. PubMed ID: 24603934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies.
    Schmidt C; Beilsten-Edmands V; Robinson CV
    J Mol Biol; 2016 Jan; 428(2 Pt A):344-356. PubMed ID: 26497764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eukaryotic ribosome display with in situ DNA recovery.
    He M; Edwards BM; Kastelic D; Taussig MJ
    Methods Mol Biol; 2012; 805():75-85. PubMed ID: 22094801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribosome display and screening for protein therapeutics.
    Kastelic D; He M
    Methods Mol Biol; 2012; 899():61-72. PubMed ID: 22735946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Approaches for Studying Ribosome Specialization.
    Emmott E; Jovanovic M; Slavov N
    Trends Biochem Sci; 2019 May; 44(5):478-479. PubMed ID: 30792028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.