These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25914246)

  • 1. Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea.
    Shi Q; Araie H; Bakku RK; Fukao Y; Rakwal R; Suzuki I; Shiraiwa Y
    Proteomics; 2015 Dec; 15(23-24):4145-58. PubMed ID: 25914246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profiling of genes coding for abundant proteins in the alkenone body of marine haptophyte alga Tisochrysis lutea.
    Shi Q
    BMC Microbiol; 2019 Mar; 19(1):56. PubMed ID: 30871466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Tisochrysis lutea Akd1 identifies a key cold-induced alkenone desaturase enzyme.
    Endo H; Hanawa Y; Araie H; Suzuki I; Shiraiwa Y
    Sci Rep; 2018 Jul; 8(1):11230. PubMed ID: 30046151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold-induced metabolic conversion of haptophyte di- to tri-unsaturated C
    Kitamura E; Kotajima T; Sawada K; Suzuki I; Shiraiwa Y
    Sci Rep; 2018 Feb; 8(1):2196. PubMed ID: 29396545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of double-bond positions in isomeric alkenones from a lacustrine haptophyte.
    Dillon JT; Longo WM; Zhang Y; Torozo R; Huang Y
    Rapid Commun Mass Spectrom; 2016 Jan; 30(1):112-8. PubMed ID: 26661977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea.
    Garnier M; Carrier G; Rogniaux H; Nicolau E; Bougaran G; Saint-Jean B; Cadoret JP
    J Proteomics; 2014 Jun; 105():107-20. PubMed ID: 24583506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic diversity in freshwater-dwelling Isochrysidales haptophytes with implications for alkenone production.
    Richter N; Longo WM; George S; Shipunova A; Huang Y; Amaral-Zettler L
    Geobiology; 2019 May; 17(3):272-280. PubMed ID: 30720914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of alkenones with variable methylene-interrupted double bonds: implications for the biosynthetic pathway.
    Zheng Y; Dillon JT; Zhang Y; Huang Y
    J Phycol; 2016 Dec; 52(6):1037-1050. PubMed ID: 27573587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Changes to Alkenone Biosynthesis in Commercial
    O'Neil GW; Keller A; Balila J; Golden S; Sipila N; Stone B; Nelson RK; Reddy CM
    ACS Omega; 2024 Apr; 9(14):16374-16383. PubMed ID: 38617607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkenone and alkenoic acid compositions of the membrane fractions of Emiliania huxleyi.
    Sawada K; Shiraiwa Y
    Phytochemistry; 2004 May; 65(9):1299-307. PubMed ID: 15184016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.
    Tsuji Y; Yamazaki M; Suzuki I; Shiraiwa Y
    Mar Biotechnol (NY); 2015 Aug; 17(4):428-40. PubMed ID: 25874681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of environmental variability and Emiliania huxleyi ecotypes on alkenone-derived temperature reconstructions in the subantarctic Southern Ocean.
    Rigual-Hernández AS; Sierro FJ; Flores JA; Trull TW; Rodrigues T; Martrat B; Sikes EL; Nodder SD; Eriksen RS; Davies D; Bravo N; Sánchez-Santos JM; Abrantes F
    Sci Total Environ; 2022 Mar; 812():152474. PubMed ID: 34952068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential alteration of U37K' paleothermometer due to selective degradation of alkenones by marine bacteria isolated from the haptophyte Emiliania huxleyi.
    Zabeti N; Bonin P; Volkman JK; Jameson ID; Guasco S; Rontani JF
    FEMS Microbiol Ecol; 2010 Jul; 73(1):83-94. PubMed ID: 20491919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17.
    Rontani JF; Beker B; Volkman JK
    Phytochemistry; 2004 Jan; 65(1):117-26. PubMed ID: 14697277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factors in microalgae: genome-wide prediction and comparative analysis.
    Thiriet-Rupert S; Carrier G; Chénais B; Trottier C; Bougaran G; Cadoret JP; Schoefs B; Saint-Jean B
    BMC Genomics; 2016 Apr; 17():282. PubMed ID: 27067009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial influence on alkenones in live microalgae.
    Segev E; Castañeda IS; Sikes EL; Vlamakis H; Kolter R
    J Phycol; 2016 Feb; 52(1):125-30. PubMed ID: 26987094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of bias in C
    Rama-Corredor O; Cortina A; Martrat B; Lopez JF; Grimalt JO
    J Chromatogr A; 2018 Sep; 1567():90-98. PubMed ID: 30007794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method for isolating individual long-chain alkenones for compound-specific hydrogen isotope analysis.
    D'Andrea WJ; Liu Z; Da Rosa Alexandre M; Wattley S; Herbert TD; Huang Y
    Anal Chem; 2007 May; 79(9):3430-5. PubMed ID: 17391004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome.
    Miller JJ; Delwiche CF
    Mar Genomics; 2015 Jun; 21():31-42. PubMed ID: 25746767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How haptophytes microalgae mitigate vitamin B
    Nef C; Jung S; Mairet F; Kaas R; Grizeau D; Garnier M
    Sci Rep; 2019 Jun; 9(1):8417. PubMed ID: 31182768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.