These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25914260)

  • 21. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.
    Luís Â; Silva F; Sousa S; Duarte AP; Domingues F
    Biofouling; 2014 Jan; 30(1):69-79. PubMed ID: 24228999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro.
    MacKintosh EE; Patel JD; Marchant RE; Anderson JM
    J Biomed Mater Res A; 2006 Sep; 78(4):836-42. PubMed ID: 16817192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation and in vitro activities of surface attached dihydropyrrol-2-ones against Gram-negative and Gram-positive bacteria.
    Ho KK; Cole N; Chen R; Willcox MD; Rice SA; Kumar N
    Biofouling; 2010 Nov; 26(8):913-21. PubMed ID: 21038151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm growth on implants: bacteria prefer plasma coats.
    Wagner C; Aytac S; Hänsch GM
    Int J Artif Organs; 2011 Sep; 34(9):811-7. PubMed ID: 22094560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus.
    Stenz L; François P; Fischer A; Huyghe A; Tangomo M; Hernandez D; Cassat J; Linder P; Schrenzel J
    FEMS Microbiol Lett; 2008 Oct; 287(2):149-55. PubMed ID: 18754790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins.
    Artini M; Scoarughi GL; Papa R; Cellini A; Carpentieri A; Pucci P; Amoresano A; Gazzola S; Cocconcelli PS; Selan L
    Int J Immunopathol Pharmacol; 2011; 24(3):661-72. PubMed ID: 21978698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
    Song F; Koo H; Ren D
    J Dent Res; 2015 Aug; 94(8):1027-34. PubMed ID: 26001706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces.
    Patir A; Hwang GB; Lourenco C; Nair SP; Carmalt CJ; Parkin IP
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5478-5485. PubMed ID: 33492929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus.
    Vuong C; Saenz HL; Götz F; Otto M
    J Infect Dis; 2000 Dec; 182(6):1688-93. PubMed ID: 11069241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Evaluation of the effect of glucose on Staphylococcus aureus and Escherichia coli biofilm formation on the surface of polypropylene mesh].
    Reśliński A; Dabrowiecki S
    Med Dosw Mikrobiol; 2013; 65(1):19-26. PubMed ID: 24180128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus.
    Lee JH; Park JH; Cho HS; Joo SW; Cho MH; Lee J
    Biofouling; 2013; 29(5):491-9. PubMed ID: 23668380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis.
    Siegismund D; Schroeter A; Lüdecke C; Undisz A; Jandt KD; Roth M; Rettenmayr M; Schuster S; Germerodt S
    Biofouling; 2014 Oct; 30(9):1023-33. PubMed ID: 25329612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colonization by Staphylococcus aureus of Nano-Structured Fluorinated Surfaces, Formed by Different Methods of Ion-Plasma Technology.
    Elinson VM; Didenko LV; Shevlyagina NV; Avtandilov GA; Gaidarova AK; Lyamin AN
    Bull Exp Biol Med; 2016 Nov; 162(1):71-74. PubMed ID: 27882465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces.
    Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C
    Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of apo-transferrin on bacterial adhesion to biomaterials.
    Ardehali R; Shi L; Janatova J; Mohammad SF; Burns GL
    Artif Organs; 2002 Jun; 26(6):512-20. PubMed ID: 12072107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces.
    Contreras-García A; Bucio E; Brackman G; Coenye T; Concheiro A; Alvarez-Lorenzo C
    Biofouling; 2011 Feb; 27(2):123-35. PubMed ID: 21213154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Albumin biofunctionalization to minimize the Staphylococcus aureus adhesion on solid substrates.
    Martín ML; Pfaffen V; Valenti LE; Giacomelli CE
    Colloids Surf B Biointerfaces; 2018 Jul; 167():156-164. PubMed ID: 29649785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa.
    Machado I; Graça J; Sousa AM; Lopes SP; Pereira MO
    Biofouling; 2011 Nov; 27(10):1151-9. PubMed ID: 22098457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lubricin: a novel means to decrease bacterial adhesion and proliferation.
    Aninwene GE; Abadian PN; Ravi V; Taylor EN; Hall DM; Mei A; Jay GD; Goluch ED; Webster TJ
    J Biomed Mater Res A; 2015 Feb; 103(2):451-62. PubMed ID: 24737699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.