These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25914370)

  • 1. Adaptation to high throughput batch chromatography enhances multivariate screening.
    Barker GA; Calzada J; Herzer S; Rieble S
    Biotechnol J; 2015 Sep; 10(9):1493-8. PubMed ID: 25914370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using high throughput screening to define virus clearance by chromatography resins.
    Connell-Crowley L; Larimore EA; Gillespie R
    Biotechnol Bioeng; 2013 Jul; 110(7):1984-94. PubMed ID: 23436296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput process development for recombinant protein purification.
    Rege K; Pepsin M; Falcon B; Steele L; Heng M
    Biotechnol Bioeng; 2006 Mar; 93(4):618-30. PubMed ID: 16369981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.
    Kittelmann J; Ottens M; Hubbuch J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():98-105. PubMed ID: 25765136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput process development of purification alternatives for the protein avidin.
    Diederich P; Hoffmann M; Hubbuch J
    Biotechnol Prog; 2015; 31(4):957-73. PubMed ID: 25958993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical strategy for using miniature chromatography columns in a standardized high-throughput workflow for purification development of monoclonal antibodies.
    Welsh JP; Petroff MG; Rowicki P; Bao H; Linden T; Roush DJ; Pollard JM
    Biotechnol Prog; 2014; 30(3):626-35. PubMed ID: 24616450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplate-Based Method for High-Throughput Screening (HTS) of Chromatographic Conditions Studies for Recombinant Protein Purification.
    Carvalho RJ; Cruz TA
    Methods Mol Biol; 2018; 1674():211-220. PubMed ID: 28921440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening of chromatographic separations: I. Method development and column modeling.
    Coffman JL; Kramarczyk JF; Kelley BD
    Biotechnol Bioeng; 2008 Jul; 100(4):605-18. PubMed ID: 18496874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Process Development for the Chromatographic Purification of Viral Antigens.
    Jacob SI; Konstantinidis S; Bracewell DG
    Methods Mol Biol; 2021; 2183():119-182. PubMed ID: 32959244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an intermediate chromatography step in an insulin purification process. The use of a High Throughput Process Development approach based on selectivity parameters.
    Heldin E; Grönlund S; Shanagar J; Hallgren E; Eriksson K; Xavier M; Tunes H; Vilela L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Dec; 973C():126-132. PubMed ID: 25464105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput process development of chromatography steps: advantages and limitations of different formats used.
    Łącki KM
    Biotechnol J; 2012 Oct; 7(10):1192-202. PubMed ID: 22745056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based high-throughput process development for chromatographic whey proteins separation.
    Nfor BK; Ripić J; van der Padt A; Jacobs M; Ottens M
    Biotechnol J; 2012 Oct; 7(10):1221-32. PubMed ID: 22887918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of pseudo-linear gradient elution for high-throughput resin selectivity screening in RoboColumn
    Kiesewetter A; Menstell P; Peeck LH; Stein A
    Biotechnol Prog; 2016 Nov; 32(6):1503-1519. PubMed ID: 27604682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed Mode Chromatography, Complex Development for Large Opportunities.
    Cabanne C; Santarelli X
    Curr Protein Pept Sci; 2019; 20(1):22-27. PubMed ID: 29086691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.
    Baumann P; Hahn T; Hubbuch J
    Biotechnol Bioeng; 2015 Oct; 112(10):2123-33. PubMed ID: 25988478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light extinction and scattering by agarose based resin beads and applications in high-throughput screening.
    Kittelmann J; Hämmerling F; Ebeler M; Hubbuch J
    J Chromatogr A; 2015 Jun; 1397():52-8. PubMed ID: 25900741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next generation multimodal chromatography resins via an iterative mapping approach: Chemical diversity, high-throughput screening, and chromatographic modelling.
    Shekhawat LK; Markle T; Esfandiarfard K; Theel EK; Maloisel JL; Malmquist G
    J Chromatogr A; 2023 Jun; 1699():464018. PubMed ID: 37119712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of the pore diffusion model to describe multi-addition batch uptake high-throughput screening experiments.
    Traylor SJ; Xu X; Li Y; Jin M; Li ZJ
    J Chromatogr A; 2014 Nov; 1368():100-6. PubMed ID: 25311484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput mAb expression and purification platform based on transient CHO.
    Barnard GC; Hougland MD; Rajendra Y
    Biotechnol Prog; 2015; 31(1):239-47. PubMed ID: 25403790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of random PEGylation reactions by means of high throughput screening.
    Maiser B; Dismer F; Hubbuch J
    Biotechnol Bioeng; 2014 Jan; 111(1):104-14. PubMed ID: 23939788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.