These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25914616)

  • 1. Global cortical activity predicts shape of hand during grasping.
    Agashe HA; Paek AY; Zhang Y; Contreras-Vidal JL
    Front Neurosci; 2015; 9():121. PubMed ID: 25914616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5444-7. PubMed ID: 22255569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography.
    Paek AY; Agashe HA; Contreras-Vidal JL
    Front Neuroeng; 2014; 7():3. PubMed ID: 24659964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous decoding of human grasp kinematics using epidural and subdural signals.
    Flint RD; Rosenow JM; Tate MC; Slutzky MW
    J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram.
    Xu B; Zhang D; Wang Y; Deng L; Wang X; Wu C; Song A
    Front Neurosci; 2021; 15():684547. PubMed ID: 34650398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding hand kinematics from population responses in sensorimotor cortex during grasping.
    Okorokova EV; Goodman JM; Hatsopoulos NG; Bensmaia SJ
    J Neural Eng; 2020 Aug; 17(4):046035. PubMed ID: 32442987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Synergy-Based Hand Movements using Electroencephalography.
    Patel V; Burns M; Pei D; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4816-4819. PubMed ID: 30441424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing Synergy-Based Hand Grasp Kinematics from Electroencephalographic Signals.
    Pei D; Olikkal P; Adali T; Vinjamuri R
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting hand forces from scalp electroencephalography during isometric force production and object grasping.
    Paek AY; Gailey A; Parikh P; Santello M; Contreras-Vidal J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7570-3. PubMed ID: 26738044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local field potentials in primate motor cortex encode grasp kinetic parameters.
    Milekovic T; Truccolo W; Grün S; Riehle A; Brochier T
    Neuroimage; 2015 Jul; 114():338-55. PubMed ID: 25869861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuously Decoding Grasping Movements using Stereotactic Depth Electrodes.
    Ottenhoff MC; Goulis S; Wagner L; Tousseyn S; Colon A; Kubben P; Herff C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6098-6101. PubMed ID: 34892508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.
    Hao Y; Zhang Q; Controzzi M; Cipriani C; Li Y; Li J; Zhang S; Wang Y; Chen W; Chiara Carrozza M; Zheng X
    J Neural Eng; 2014 Dec; 11(6):066011. PubMed ID: 25380169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing movement factors in upper limb kinematics decoding from EEG signals.
    Úbeda A; Hortal E; Iáñez E; Perez-Vidal C; Azorín JM
    PLoS One; 2015; 10(5):e0128456. PubMed ID: 26020525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting kinetic information from human motor cortical signals.
    Flint RD; Wang PT; Wright ZA; King CE; Krucoff MO; Schuele SU; Rosenow JM; Hsu FP; Liu CY; Lin JJ; Sazgar M; Millett DE; Shaw SJ; Nenadic Z; Do AH; Slutzky MW
    Neuroimage; 2014 Nov; 101():695-703. PubMed ID: 25094020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy.
    Kobler RJ; Sburlea AI; Mondini V; Hirata M; Müller-Putz GR
    J Neural Eng; 2020 Nov; 17(5):056027. PubMed ID: 33146148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.