These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25914687)

  • 1. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Heterologous Phenazine Production in
    Askitosari TD; Boto ST; Blank LM; Rosenbaum MA
    Front Microbiol; 2019; 10():1990. PubMed ID: 31555229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by
    Bosire EM; Rosenbaum MA
    Front Microbiol; 2017; 8():892. PubMed ID: 28572797
    [No Abstract]   [Full Text] [Related]  

  • 8. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system.
    Lai B; Yu S; Bernhardt PV; Rabaey K; Virdis B; Krömer JO
    Biotechnol Biofuels; 2016; 9():39. PubMed ID: 26893611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
    Nguyen AV; Lai B; Adrian L; Krömer JO
    Microb Biotechnol; 2021 Jul; 14(4):1784-1796. PubMed ID: 34115443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Three Xylose Pathways in
    Bator I; Wittgens A; Rosenau F; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2019; 7():480. PubMed ID: 32010683
    [No Abstract]   [Full Text] [Related]  

  • 14. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.
    Yu S; Lai B; Plan MR; Hodson MP; Lestari EA; Song H; Krömer JO
    Biotechnol Bioeng; 2018 Jan; 115(1):145-155. PubMed ID: 28921555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas putida KT2440 endures temporary oxygen limitations.
    Demling P; Ankenbauer A; Klein B; Noack S; Tiso T; Takors R; Blank LM
    Biotechnol Bioeng; 2021 Dec; 118(12):4735-4750. PubMed ID: 34506651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa.
    Parsons JF; Greenhagen BT; Shi K; Calabrese K; Robinson H; Ladner JE
    Biochemistry; 2007 Feb; 46(7):1821-8. PubMed ID: 17253782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.