BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25914687)

  • 1. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Heterologous Phenazine Production in
    Askitosari TD; Boto ST; Blank LM; Rosenbaum MA
    Front Microbiol; 2019; 10():1990. PubMed ID: 31555229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by
    Bosire EM; Rosenbaum MA
    Front Microbiol; 2017; 8():892. PubMed ID: 28572797
    [No Abstract]   [Full Text] [Related]  

  • 8. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system.
    Lai B; Yu S; Bernhardt PV; Rabaey K; Virdis B; Krömer JO
    Biotechnol Biofuels; 2016; 9():39. PubMed ID: 26893611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
    Nguyen AV; Lai B; Adrian L; Krömer JO
    Microb Biotechnol; 2021 Jul; 14(4):1784-1796. PubMed ID: 34115443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Three Xylose Pathways in
    Bator I; Wittgens A; Rosenau F; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2019; 7():480. PubMed ID: 32010683
    [No Abstract]   [Full Text] [Related]  

  • 14. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.
    Yu S; Lai B; Plan MR; Hodson MP; Lestari EA; Song H; Krömer JO
    Biotechnol Bioeng; 2018 Jan; 115(1):145-155. PubMed ID: 28921555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas putida KT2440 endures temporary oxygen limitations.
    Demling P; Ankenbauer A; Klein B; Noack S; Tiso T; Takors R; Blank LM
    Biotechnol Bioeng; 2021 Dec; 118(12):4735-4750. PubMed ID: 34506651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa.
    Parsons JF; Greenhagen BT; Shi K; Calabrese K; Robinson H; Ladner JE
    Biochemistry; 2007 Feb; 46(7):1821-8. PubMed ID: 17253782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.