These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25914706)

  • 1. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress.
    Yan K; Wu C; Zhang L; Chen X
    Front Plant Sci; 2015; 6():227. PubMed ID: 25914706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination.
    Yan K; He W; Bian L; Zhang Z; Tang X; An M; Li L; Han G
    BMC Plant Biol; 2020 Apr; 20(1):155. PubMed ID: 32276592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke (
    Yan K; Mei H; Dong X; Zhou S; Cui J; Sun Y
    Front Plant Sci; 2022; 13():905100. PubMed ID: 35968142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering salt tolerance in tetraploid honeysuckle (Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense.
    Yan K; Cui J; Zhi Y; Su H; Yu S; Zhou S
    Plant Physiol Biochem; 2023 Feb; 195():266-274. PubMed ID: 36652848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging.
    Yan K; Zhao S; Cui M; Han G; Wen P
    Plant Physiol Biochem; 2018 Apr; 125():239-246. PubMed ID: 29477087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root Abscisic Acid Contributes to Defending Photoinibition in Jerusalem Artichoke (
    Yan K; Bian T; He W; Han G; Lv M; Guo M; Lu M
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat-induced down-regulation of photosystem II protects photosystem I in honeysuckle (Lonicera japonica).
    Jiang Y; Feng X; Wang H; Chen Y; Sun Y
    J Plant Res; 2021 Nov; 134(6):1311-1321. PubMed ID: 34351552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Dec; 165():71-79. PubMed ID: 27768955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress.
    Yan K; Chen P; Shao H; Shao C; Zhao S; Brestic M
    PLoS One; 2013; 8(5):e62100. PubMed ID: 23717388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.).
    Yang XQ; Zhang QS; Zhang D; Sheng ZT
    Plant Physiol Biochem; 2017 Apr; 113():168-176. PubMed ID: 28236752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage.
    Tikkanen M; Mekala NR; Aro EM
    Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment.
    Yang C; Zhang ZS; Gao HY; Fan XL; Liu MJ; Li XD
    J Photochem Photobiol B; 2014 Nov; 140():286-91. PubMed ID: 25194527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species
    Cun Z; Wu HM; Zhang JY; Shuang SP; Hong J; Chen JW
    Front Plant Sci; 2022; 13():796931. PubMed ID: 35242152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.
    Sun Y; Geng Q; Du Y; Yang X; Zhai H
    Plant Sci; 2017 Mar; 256():65-71. PubMed ID: 28167040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling.
    Borbély P; Poór P; Tari I
    Plant Physiol Biochem; 2020 Nov; 156():345-356. PubMed ID: 33002713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderate Photoinhibition of Photosystem II Protects Photosystem I from Photodamage at Chilling Stress in Tobacco Leaves.
    Huang W; Yang YJ; Hu H; Zhang SB
    Front Plant Sci; 2016; 7():182. PubMed ID: 26941755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress.
    Huang L; Li Z; Pan S; Liu Q; Pu G; Zhang Y; Li J
    Funct Plant Biol; 2019 Nov; 46(12):1103-1113. PubMed ID: 31581977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis.
    Zhang T; Gong H; Wen X; Lu C
    J Plant Physiol; 2010 Aug; 167(12):951-8. PubMed ID: 20417984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea.
    Goussi R; Manaa A; Derbali W; Cantamessa S; Abdelly C; Barbato R
    J Photochem Photobiol B; 2018 Jun; 183():275-287. PubMed ID: 29751261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.