These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metabolic status of fresh v eye-bank-processed corneas. A phosphorus nuclear magnetic resonance study. Greiner JV; Lass JH; Glonek T Arch Ophthalmol; 1984 Nov; 102(11):1676-7. PubMed ID: 6497751 [TBL] [Abstract][Full Text] [Related]
3. Distribution of phosphatic metabolites in the porcine cornea using phosphorus-31 nuclear magnetic resonance. Greiner JV; Braude LS; Glonek T Exp Eye Res; 1985 Mar; 40(3):335-42. PubMed ID: 4065230 [TBL] [Abstract][Full Text] [Related]
4. Phosphatic metabolites of the intact cornea by phosphorus-31 nuclear magnetic resonance. Greiner JV; Kopp SJ; Gillette TE; Glonek T Invest Ophthalmol Vis Sci; 1983 May; 24(5):535-42. PubMed ID: 6840999 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive metabolic analysis of eye bank corneas: a magnetic resonance spectroscopic study. Greiner JV; Lass JH; Glonek T Graefes Arch Clin Exp Ophthalmol; 1989; 227(3):295-9. PubMed ID: 2737487 [TBL] [Abstract][Full Text] [Related]
7. Ex vivo metabolic analysis of eye bank corneas using phosphorus nuclear magnetic resonance. Greiner JV; Lass JH; Glonek T Arch Ophthalmol; 1984 Aug; 102(8):1171-3. PubMed ID: 6466181 [TBL] [Abstract][Full Text] [Related]
8. The effects of age on phosphatic metabolites of the human cornea. Lass JH; Greiner JV; Merchant TE; Glonek T Cornea; 1995 Jan; 14(1):89-94. PubMed ID: 7712743 [TBL] [Abstract][Full Text] [Related]
9. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Morishige N; Wahlert AJ; Kenney MC; Brown DJ; Kawamoto K; Chikama T; Nishida T; Jester JV Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1087-94. PubMed ID: 17325150 [TBL] [Abstract][Full Text] [Related]
10. Nondestructive metabolic analysis of a cornea with the use of phosphorus nuclear magnetic resonance. Greiner JV; Kopp SJ; Glonek T Arch Ophthalmol; 1984 May; 102(5):770-1. PubMed ID: 6372765 [TBL] [Abstract][Full Text] [Related]
11. Expression of betaig-h3 is lower than normal in keratoconus corneas but increases with scarring. Takács L; Csutak A; Balázs E; Módis L; Berta A Cornea; 1999 Sep; 18(5):599-605. PubMed ID: 10487436 [TBL] [Abstract][Full Text] [Related]
12. Phosphatic intermediate metabolites of the porcine ocular tunica fibrosa. Sachedina S; Greiner JV; Glonek T Exp Eye Res; 1991 Mar; 52(3):253-60. PubMed ID: 2015855 [TBL] [Abstract][Full Text] [Related]
13. Lectin binding in normal, keratoconus and cross-linked human corneas. Mencucci R; Marini M; Gheri G; Vichi D; Sarchielli E; Bonaccini L; Ambrosini S; Zappoli Thyrion GD; Paladini I; Vannelli GB; Sgambati E Acta Histochem; 2011 May; 113(3):308-16. PubMed ID: 20053427 [TBL] [Abstract][Full Text] [Related]
14. Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas. Mencucci R; Paladini I; Sarchielli E; Favuzza E; Vannelli GB; Marini M Am J Ophthalmol; 2013 Nov; 156(5):874-884.e1. PubMed ID: 23972311 [TBL] [Abstract][Full Text] [Related]
16. Protein-related abnormalities in keratoconus. Panjwani N; Drysdale J; Clark B; Alberta J; Baum J Invest Ophthalmol Vis Sci; 1989 Dec; 30(12):2481-7. PubMed ID: 2592160 [TBL] [Abstract][Full Text] [Related]
17. In vitro incorporation of proline into keratoconic human corneas. Rehany U; Shoshan S Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1254-7. PubMed ID: 6490329 [TBL] [Abstract][Full Text] [Related]
18. Reduced expression of the gap junction protein Connexin 43 in keratoconus. Gatzioufas Z; Charalambous P; Thanos S Eye (Lond); 2008 Feb; 22(2):294-9. PubMed ID: 17873856 [TBL] [Abstract][Full Text] [Related]