These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2591504)

  • 1. Phosphorylcholine and phosphorylethanolamine in human and rhesus monkey lenses.
    Jernigan HM; Zigler JS
    Exp Eye Res; 1989 Nov; 49(5):901-9. PubMed ID: 2591504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efflux and hydrolysis of phosphorylethanolamine and phosphorylcholine in stressed cultured rat lenses.
    Jernigan HM; Desouky MA; Geller AM; Blum PS; Ekambaram MC
    Exp Eye Res; 1993 Jan; 56(1):25-33. PubMed ID: 8432332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of xylose on the synthesis of phosphorylcholine and phosphorylethanolamine in rat lenses.
    Jernigan HM; Ekambaram MC; Blum PS; Blanchard MS
    Exp Eye Res; 1993 Mar; 56(3):291-7. PubMed ID: 8472784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of xylose on monkey lenses in organ culture: a model for study of sugar cataracts in a primate.
    Jernigan HM; Zigler JS; Liu Y; Blum PS; Merola LO; Stimbert CD
    Exp Eye Res; 1998 Jul; 67(1):61-71. PubMed ID: 9702179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of osmotic stress on phosphorylcholine efflux and turnover in rat lenses.
    Desouky MA; Geller AM; Jernigan HM
    Exp Eye Res; 1992 Feb; 54(2):269-76. PubMed ID: 1559554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs.
    Jernigan HM; Blum PS; Chakrabarti I; Su Y; Zigler JS
    Ophthalmic Res; 2005; 37(1):7-12. PubMed ID: 15604593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of an aldose reductase inhibitor on lens phosphorylcholine under hyperglycemic conditions: biochemical and NMR studies.
    Lou MF; Garadi R; Thomas DM; Mahendroo PP; York BM; Jernigan HM
    Exp Eye Res; 1989 Jan; 48(1):11-24. PubMed ID: 2493385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylcholine and phosphorylethanolamine concentrations in the lens.
    Zelenka PS; Jernigan HM
    Exp Eye Res; 1982 Feb; 34(2):209-17. PubMed ID: 7060648
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of cataractogenesis on the CDP-choline pathway: changes in ATP concentration and phosphocholine synthesis during and after exposure of rat lenses to sugars in vitro and in vivo.
    Liu Y; Blum PS; Pabst DM; Chakrabarti I; Jernigan HM
    Ophthalmic Res; 2003; 35(4):185-91. PubMed ID: 12815193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat lens choline and ethanolamine kinases: independent kinetics in intact tissue-competition in homogenates.
    Ekambaram MC; Jernigan HM
    Biochim Biophys Acta; 1994 Aug; 1213(3):289-94. PubMed ID: 8049241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhesus monkey lens as an in vitro model for studying oxidative stress.
    Zigler JS; Lucas VA; Du XY
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2195-9. PubMed ID: 2793360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rat brain cytosolic N-methyltransferase(s) activity converting phosphorylethanolamine into phosphorylcholine.
    Andriamampandry C; Massarelli R; Freysz L; Kanfer JN
    Biochem Biophys Res Commun; 1990 Sep; 171(2):758-63. PubMed ID: 2403362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier mediated transport of choline in rat lens.
    Jernigan HM; Kador PF; Kinoshita JH
    Exp Eye Res; 1981 Jun; 32(6):709-17. PubMed ID: 7250222
    [No Abstract]   [Full Text] [Related]  

  • 14. Lipid metabolism in large T47D human breast cancer spheroids: 31P- and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1992 Mar; 1138(3):203-12. PubMed ID: 1547282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain.
    Blüml S; Seymour KJ; Ross BD
    Magn Reson Med; 1999 Oct; 42(4):643-54. PubMed ID: 10502752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactosemic cataractogenesis disrupts intracellular interactions and changes the substrate specificity of choline/ethanolamine kinase.
    Liu Y; Ekambaram MC; Blum PS; Stimbert CD; Jernigan HM
    Exp Eye Res; 1998 Aug; 67(2):193-202. PubMed ID: 9733585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptake.
    Ronen SM; Rushkin E; Degani H
    Biochim Biophys Acta; 1991 Oct; 1095(1):5-16. PubMed ID: 1657190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The integrity of mammalian lenses in organ culture.
    Tumminia SJ; Qin C; Zigler JS; Russell P
    Exp Eye Res; 1994 Mar; 58(3):367-74. PubMed ID: 8174656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.