These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25915112)

  • 1. Sulfation mediates activity of zosteric acid against biofilm formation.
    Kurth C; Cavas L; Pohnert G
    Biofouling; 2015; 31(3):253-63. PubMed ID: 25915112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An antifouling model from the sea: a review of 25 years of zosteric acid studies.
    Vilas-Boas C; Sousa E; Pinto M; Correia-da-Silva M
    Biofouling; 2017 Nov; 33(10):927-942. PubMed ID: 29171304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.
    Cattò C; Dell'Orto S; Villa F; Villa S; Gelain A; Vitali A; Marzano V; Baroni S; Forlani F; Cappitelli F
    PLoS One; 2015; 10(7):e0131519. PubMed ID: 26132116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfated phenolic acids from Dasycladales siphonous green algae.
    Kurth C; Welling M; Pohnert G
    Phytochemistry; 2015 Sep; 117():417-423. PubMed ID: 26188914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindering biofilm formation with zosteric acid.
    Villa F; Albanese D; Giussani B; Stewart PS; Daffonchio D; Cappitelli F
    Biofouling; 2010 Aug; 26(6):739-52. PubMed ID: 20711895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation.
    Cattò C; James G; Villa F; Villa S; Cappitelli F
    Biofouling; 2018 Apr; 34(4):440-452. PubMed ID: 29726716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants.
    Xu Q; Barrios CA; Cutright T; Zhang Newby BM
    Environ Toxicol; 2005 Oct; 20(5):467-74. PubMed ID: 16161071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic and Proteomic Changes in
    Cattò C; Corte L; Roscini L; Cardinali G; Villa F; Cappitelli F
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro inhibition of dengue virus entry by p-sulfoxy-cinnamic acid and structurally related combinatorial chemistries.
    Rees CR; Costin JM; Fink RC; McMichael M; Fontaine KA; Isern S; Michael SF
    Antiviral Res; 2008 Nov; 80(2):135-42. PubMed ID: 18606464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories.
    Jendresen CB; Nielsen AT
    Nat Commun; 2019 Sep; 10(1):4071. PubMed ID: 31492833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli.
    Kot B; Wicha J; Piechota M; Wolska K; Gruzewska A
    Turk J Med Sci; 2015; 45(4):919-24. PubMed ID: 26422868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward non-toxic antifouling: synthesis of hydroxy-, cinnamic acid-, sulfate-, and zosteric acid-labeled poly[3-hydroxyalkanoates].
    Hany R; Böhlen C; Geiger T; Schmid M; Zinn M
    Biomacromolecules; 2004; 5(4):1452-6. PubMed ID: 15244464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt.
    Villa F; Remelli W; Forlani F; Vitali A; Cappitelli F
    Environ Microbiol; 2012 Jul; 14(7):1753-61. PubMed ID: 22176949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment.
    Barrios CA; Xu Q; Cutright T; Newby BM
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):83-93. PubMed ID: 15737532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of antifouling effectiveness of two natural product antifoulants by attachment study with freshwater bacteria.
    Xu Q; Barrios CA; Cutright T; Newby BM
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):278-84. PubMed ID: 16206721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biosurfactant derived from Vibrio natriegens MK3 against Vibrio harveyi biofilm and virulence.
    Kannan S; Krishnamoorthy G; Kulanthaiyesu A; Marudhamuthu M
    J Basic Microbiol; 2019 Sep; 59(9):936-949. PubMed ID: 31347191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and antifungal activity of cinnamic acid esters.
    Tawata S; Taira S; Kobamoto N; Zhu J; Ishihara M; Toyama S
    Biosci Biotechnol Biochem; 1996 May; 60(5):909-10. PubMed ID: 8704323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels--a preliminary study.
    Ram JL; Purohit S; Newby BM; Cutright TJ
    Nat Prod Res; 2012; 26(6):580-4. PubMed ID: 21861646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids.
    Sevimli-Gur C; Yesil-Celiktas O
    Mol Biol Rep; 2019 Aug; 46(4):3691-3699. PubMed ID: 31004301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiofilm activities of the cinnamon extract against Vibrio parahaemolyticus and Escherichia coli.
    Lu C; Liu H; Shangguan W; Chen S; Zhong Q
    Arch Microbiol; 2021 Jan; 203(1):125-135. PubMed ID: 32772125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.