These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 25915172)
1. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. Ayán-Varela M; Paredes JI; Guardia L; Villar-Rodil S; Munuera JM; Díaz-González M; Fernández-Sánchez C; Martínez-Alonso A; Tascón JM ACS Appl Mater Interfaces; 2015 May; 7(19):10293-307. PubMed ID: 25915172 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of aqueous graphene dispersions utilizing a biocompatible dispersant: a molecular dynamics study. Huang S; Croy A; Bezugly V; Cuniberti G Phys Chem Chem Phys; 2019 Nov; 21(43):24007-24016. PubMed ID: 31646309 [TBL] [Abstract][Full Text] [Related]
3. Dispersions of non-covalently functionalized graphene with minimal stabilizer. Parviz D; Das S; Ahmed HS; Irin F; Bhattacharia S; Green MJ ACS Nano; 2012 Oct; 6(10):8857-67. PubMed ID: 23002781 [TBL] [Abstract][Full Text] [Related]
4. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. Ayán-Varela M; Villar-Rodil S; Paredes JI; Munuera JM; Pagán A; Lozano-Pérez AA; Cenis JL; Martínez-Alonso A; Tascón JM ACS Appl Mater Interfaces; 2015 Nov; 7(43):24032-45. PubMed ID: 26465228 [TBL] [Abstract][Full Text] [Related]
5. Direct Electrochemical Vibrio DNA Sensing Adopting Highly Stable Graphene-Flavin Mononucleotide Aqueous Dispersion Modified Interface. Yang T; Chen H; Qiu Z; Yu R; Luo S; Li W; Jiao K ACS Appl Mater Interfaces; 2018 Feb; 10(5):4540-4547. PubMed ID: 29334458 [TBL] [Abstract][Full Text] [Related]
6. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide. Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300 [TBL] [Abstract][Full Text] [Related]
8. High-concentration, surfactant-stabilized graphene dispersions. Lotya M; King PJ; Khan U; De S; Coleman JN ACS Nano; 2010 Jun; 4(6):3155-62. PubMed ID: 20455583 [TBL] [Abstract][Full Text] [Related]
9. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. Xu S; Man B; Jiang S; Wang J; Wei J; Xu S; Liu H; Gao S; Liu H; Li Z; Li H; Qiu H ACS Appl Mater Interfaces; 2015 May; 7(20):10977-87. PubMed ID: 25941901 [TBL] [Abstract][Full Text] [Related]
10. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Giovanni M; Poh HL; Ambrosi A; Zhao G; Sofer Z; Šaněk F; Khezri B; Webster RD; Pumera M Nanoscale; 2012 Aug; 4(16):5002-8. PubMed ID: 22763466 [TBL] [Abstract][Full Text] [Related]
11. Bulk preparation of holey graphene via controlled catalytic oxidation. Lin Y; Watson KA; Kim JW; Baggett DW; Working DC; Connell JW Nanoscale; 2013 Sep; 5(17):7814-24. PubMed ID: 23764650 [TBL] [Abstract][Full Text] [Related]
13. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Sun Z; Masa J; Liu Z; Schuhmann W; Muhler M Chemistry; 2012 May; 18(22):6972-8. PubMed ID: 22504902 [TBL] [Abstract][Full Text] [Related]
14. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. Ihiawakrim D; Ersen O; Melin F; Hellwig P; Janowska I; Begin D; Baaziz W; Begin-Colin S; Pham-Huu C; Baati R Nanoscale; 2013 Oct; 5(19):9073-80. PubMed ID: 23900422 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. Yin H; Tang H; Wang D; Gao Y; Tang Z ACS Nano; 2012 Sep; 6(9):8288-97. PubMed ID: 22931045 [TBL] [Abstract][Full Text] [Related]
18. Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene. Lee J; Kim J; Ahmed SR; Zhou H; Kim JM; Lee J ACS Appl Mater Interfaces; 2014 Dec; 6(23):21380-8. PubMed ID: 25394727 [TBL] [Abstract][Full Text] [Related]
19. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Li H; Han L; Cooper-White JJ; Kim I Nanoscale; 2012 Feb; 4(4):1355-61. PubMed ID: 22278595 [TBL] [Abstract][Full Text] [Related]
20. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]