BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25915172)

  • 1. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.
    Ayán-Varela M; Paredes JI; Guardia L; Villar-Rodil S; Munuera JM; Díaz-González M; Fernández-Sánchez C; Martínez-Alonso A; Tascón JM
    ACS Appl Mater Interfaces; 2015 May; 7(19):10293-307. PubMed ID: 25915172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of aqueous graphene dispersions utilizing a biocompatible dispersant: a molecular dynamics study.
    Huang S; Croy A; Bezugly V; Cuniberti G
    Phys Chem Chem Phys; 2019 Nov; 21(43):24007-24016. PubMed ID: 31646309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersions of non-covalently functionalized graphene with minimal stabilizer.
    Parviz D; Das S; Ahmed HS; Irin F; Bhattacharia S; Green MJ
    ACS Nano; 2012 Oct; 6(10):8857-67. PubMed ID: 23002781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride.
    Ayán-Varela M; Villar-Rodil S; Paredes JI; Munuera JM; Pagán A; Lozano-Pérez AA; Cenis JL; Martínez-Alonso A; Tascón JM
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24032-45. PubMed ID: 26465228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Electrochemical Vibrio DNA Sensing Adopting Highly Stable Graphene-Flavin Mononucleotide Aqueous Dispersion Modified Interface.
    Yang T; Chen H; Qiu Z; Yu R; Luo S; Li W; Jiao K
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4540-4547. PubMed ID: 29334458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.
    Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM
    Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW
    J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-concentration, surfactant-stabilized graphene dispersions.
    Lotya M; King PJ; Khan U; De S; Coleman JN
    ACS Nano; 2010 Jun; 4(6):3155-62. PubMed ID: 20455583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine.
    Xu S; Man B; Jiang S; Wang J; Wei J; Xu S; Liu H; Gao S; Liu H; Li Z; Li H; Qiu H
    ACS Appl Mater Interfaces; 2015 May; 7(20):10977-87. PubMed ID: 25941901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis.
    Giovanni M; Poh HL; Ambrosi A; Zhao G; Sofer Z; Šaněk F; Khezri B; Webster RD; Pumera M
    Nanoscale; 2012 Aug; 4(16):5002-8. PubMed ID: 22763466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk preparation of holey graphene via controlled catalytic oxidation.
    Lin Y; Watson KA; Kim JW; Baggett DW; Working DC; Connell JW
    Nanoscale; 2013 Sep; 5(17):7814-24. PubMed ID: 23764650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalytic Oxygen Reduction Performance of Silver Nanoparticle Decorated Electrochemically Exfoliated Graphene.
    Lopes JH; Ye S; Gostick JT; Barralet JE; Merle G
    Langmuir; 2015 Sep; 31(35):9718-27. PubMed ID: 26038977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction.
    Sun Z; Masa J; Liu Z; Schuhmann W; Muhler M
    Chemistry; 2012 May; 18(22):6972-8. PubMed ID: 22504902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles.
    Ihiawakrim D; Ersen O; Melin F; Hellwig P; Janowska I; Begin D; Baaziz W; Begin-Colin S; Pham-Huu C; Baati R
    Nanoscale; 2013 Oct; 5(19):9073-80. PubMed ID: 23900422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity.
    Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction.
    Yin H; Tang H; Wang D; Gao Y; Tang Z
    ACS Nano; 2012 Sep; 6(9):8288-97. PubMed ID: 22931045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene.
    Lee J; Kim J; Ahmed SR; Zhou H; Kim JM; Lee J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21380-8. PubMed ID: 25394727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers.
    Li H; Han L; Cooper-White JJ; Kim I
    Nanoscale; 2012 Feb; 4(4):1355-61. PubMed ID: 22278595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.