These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25915173)

  • 1. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics.
    Barbry M; Koval P; Marchesin F; Esteban R; Borisov AG; Aizpurua J; Sánchez-Portal D
    Nano Lett; 2015 May; 15(5):3410-9. PubMed ID: 25915173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology dependent near-field response in atomistic plasmonic nanocavities.
    Chen X; Jensen L
    Nanoscale; 2018 Jun; 10(24):11410-11417. PubMed ID: 29881862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy.
    Lee YU; Wisna GBM; Hsu SW; Zhao J; Lei M; Li S; Tao AR; Liu Z
    ACS Nano; 2020 Jun; 14(6):7666-7672. PubMed ID: 32438800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric-loading approach for extra electric field enhancement and spatially transferring plasmonic hot-spots.
    Wan M; Wu J; Liu J; Chen Z; Gu P; Zhan P; Wang Z; Bozhevolnyi SI
    Nanotechnology; 2021 Jan; 32(3):035205. PubMed ID: 33094736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers.
    Teperik TV; Nordlander P; Aizpurua J; Borisov AG
    Opt Express; 2013 Nov; 21(22):27306-25. PubMed ID: 24216954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
    Linnenbank H; Grynko Y; Förstner J; Linden S
    Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning Tunneling Microscopy-Induced Light Emission and
    Lebedev DV; Shkoldin VA; Mozharov AM; Permyakov DV; Dvoretckaia LN; Bogdanov AA; Samusev AK; Golubok AO; Mukhin IS
    J Phys Chem Lett; 2021 Jan; 12(1):501-507. PubMed ID: 33373245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum surface effects in the electromagnetic coupling between a quantum emitter and a plasmonic nanoantenna: time-dependent density functional theory vs. semiclassical Feibelman approach.
    Babaze A; Ogando E; Elli Stamatopoulou P; Tserkezis C; Asger Mortensen N; Aizpurua J; Borisov AG; Esteban R
    Opt Express; 2022 Jun; 30(12):21159-21183. PubMed ID: 36224842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold and Hot Spots: From Inhibition to Enhancement by Nanoscale Phase Tuning of Optical Nanoantennas.
    Palombo Blascetta N; Lombardi P; Toninelli C; van Hulst NF
    Nano Lett; 2020 Sep; 20(9):6756-6762. PubMed ID: 32804516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Exciton-Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture.
    Babaze A; Esteban R; Borisov AG; Aizpurua J
    Nano Lett; 2021 Oct; 21(19):8466-8473. PubMed ID: 34529442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected Dipole Model for Quantum Plasmonics.
    Yan W; Wubs M; Asger Mortensen N
    Phys Rev Lett; 2015 Sep; 115(13):137403. PubMed ID: 26451583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas.
    Hobbs RG; Putnam WP; Fallahi A; Yang Y; Kärtner FX; Berggren KK
    Nano Lett; 2017 Oct; 17(10):6069-6076. PubMed ID: 28926275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
    Herrmann JF; Höppener C
    Beilstein J Nanotechnol; 2018; 9():2188-2197. PubMed ID: 30202689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classical description of subnanometer resolution by atomic features in metallic structures.
    Trautmann S; Aizpurua J; Götz I; Undisz A; Dellith J; Schneidewind H; Rettenmayr M; Deckert V
    Nanoscale; 2017 Jan; 9(1):391-401. PubMed ID: 27924333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local field enhancement using a photonic-plasmonic nanostructure.
    Hsu L; Baida FI; Ndao A
    Opt Express; 2021 Jan; 29(2):1102-1108. PubMed ID: 33726332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Far-Field Super-resolution Detection of Plasmonic Near-Fields.
    Boutelle RC; Neuhauser D; Weiss S
    ACS Nano; 2016 Aug; 10(8):7955-62. PubMed ID: 27501216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.