These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mechanism of imipenem resistance in metallo-β-lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach. Malathi K; Ramaiah S J Cell Biochem; 2019 Jan; 120(1):584-591. PubMed ID: 30125985 [TBL] [Abstract][Full Text] [Related]
4. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Muhammad Z; Skagseth S; Boomgaren M; Akhter S; Fröhlich C; Ismael A; Christopeit T; Bayer A; Leiros HS Bioorg Med Chem; 2020 Aug; 28(15):115598. PubMed ID: 32631568 [TBL] [Abstract][Full Text] [Related]
5. His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7. Leiros HK; Skagseth S; Edvardsen KS; Lorentzen MS; Bjerga GE; Leiros I; Samuelsen Ø Antimicrob Agents Chemother; 2014 Aug; 58(8):4826-36. PubMed ID: 24913158 [TBL] [Abstract][Full Text] [Related]
6. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Christopeit T; Yang KW; Yang SK; Leiros HK Acta Crystallogr F Struct Biol Commun; 2016 Nov; 72(Pt 11):813-819. PubMed ID: 27834790 [TBL] [Abstract][Full Text] [Related]
7. Approved Drugs Containing Thiols as Inhibitors of Metallo-β-lactamases: Strategy To Combat Multidrug-Resistant Bacteria. Klingler FM; Wichelhaus TA; Frank D; Cuesta-Bernal J; El-Delik J; Müller HF; Sjuts H; Göttig S; Koenigs A; Pos KM; Pogoryelov D; Proschak E J Med Chem; 2015 Apr; 58(8):3626-30. PubMed ID: 25815530 [TBL] [Abstract][Full Text] [Related]
8. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. Borra PS; Leiros HK; Ahmad R; Spencer J; Leiros I; Walsh TR; Sundsfjord A; Samuelsen O J Mol Biol; 2011 Aug; 411(1):174-89. PubMed ID: 21645522 [TBL] [Abstract][Full Text] [Related]
10. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Pegg KM; Liu EM; George AC; LaCuran AE; Bethel CR; Bonomo RA; Oelschlaeger P Protein Sci; 2014 Oct; 23(10):1451-60. PubMed ID: 25131397 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Juan C; Beceiro A; Gutiérrez O; Albertí S; Garau M; Pérez JL; Bou G; Oliver A Antimicrob Agents Chemother; 2008 Oct; 52(10):3589-96. PubMed ID: 18644957 [TBL] [Abstract][Full Text] [Related]
12. VIM-2 beta-lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia. Bosnjak Z; Bedenić B; Mazzariol A; Jarza-Davila N; Suto S; Kalenić S Scand J Infect Dis; 2010 Mar; 42(3):193-7. PubMed ID: 20001226 [TBL] [Abstract][Full Text] [Related]
13. Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-β-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance. Wachino JI; Jin W; Kimura K; Kurosaki H; Sato A; Arakawa Y mBio; 2020 Mar; 11(2):. PubMed ID: 32184250 [TBL] [Abstract][Full Text] [Related]
14. Faropenem reacts with serine and metallo-β-lactamases to give multiple products. Lucic A; Hinchliffe P; Malla TR; Tooke CL; Brem J; Calvopiña K; Lohans CT; Rabe P; McDonough MA; Armistead T; Orville AM; Spencer J; Schofield CJ Eur J Med Chem; 2021 Apr; 215():113257. PubMed ID: 33618159 [TBL] [Abstract][Full Text] [Related]
15. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases. Leiros HK; Edvardsen KS; Bjerga GE; Samuelsen Ø FEBS J; 2015 Mar; 282(6):1031-42. PubMed ID: 25601024 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases. Salimraj R; Hinchliffe P; Kosmopoulou M; Tyrrell JM; Brem J; van Berkel SS; Verma A; Owens RJ; McDonough MA; Walsh TR; Schofield CJ; Spencer J FEBS J; 2019 Jan; 286(1):169-183. PubMed ID: 30430727 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization of metallo-beta-lactamase VIM-11 from a Pseudomonas aeruginosa clinical strain. Marchiaro P; Tomatis PE; Mussi MA; Pasteran F; Viale AM; Limansky AS; Vila AJ Antimicrob Agents Chemother; 2008 Jun; 52(6):2250-2. PubMed ID: 18362187 [TBL] [Abstract][Full Text] [Related]
18. Analysis of a novel class 1 integron containing metallo-beta-lactamase gene VIM-2 in Pseudomonas aeruginosa. Jeong JH; Shin KS; Lee JW; Park EJ; Son SY J Microbiol; 2009 Dec; 47(6):753-9. PubMed ID: 20127470 [TBL] [Abstract][Full Text] [Related]
19. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Palacios AR; Mojica MF; Giannini E; Taracila MA; Bethel CR; Alzari PM; Otero LH; Klinke S; Llarrull LI; Bonomo RA; Vila AJ Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348667 [TBL] [Abstract][Full Text] [Related]