These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25915687)

  • 1. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity.
    Maciejewski M; Wassermann AM; Glick M; Lounkine E
    J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity.
    Sukuru SC; Jenkins JL; Beckwith RE; Scheiber J; Bender A; Mikhailov D; Davies JW; Glick M
    J Biomol Screen; 2009 Jul; 14(6):690-9. PubMed ID: 19531667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamlining lead discovery by aligning in silico and high-throughput screening.
    Davies JW; Glick M; Jenkins JL
    Curr Opin Chem Biol; 2006 Aug; 10(4):343-51. PubMed ID: 16822701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data.
    Paricharak S; IJzerman AP; Bender A; Nigsch F
    ACS Chem Biol; 2016 May; 11(5):1255-64. PubMed ID: 26878899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding.
    Dreiman GHS; Bictash M; Fish PV; Griffin L; Svensson F
    SLAS Discov; 2021 Feb; 26(2):257-262. PubMed ID: 32808550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.
    Bell AS; Bradley J; Everett JR; Loesel J; McLoughlin D; Mills J; Peakman MC; Sharp RE; Williams C; Zhu H
    Mol Divers; 2016 Nov; 20(4):789-803. PubMed ID: 27631533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated in vitro-in silico screening strategy for the discovery of antibacterial compounds.
    Nybond S; Ghemtio L; Nawrot DA; Karp M; Xhaard H; Tammela P
    Assay Drug Dev Technol; 2015; 13(1):25-33. PubMed ID: 25710544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening strategies in drug discovery.
    McInnes C
    Curr Opin Chem Biol; 2007 Oct; 11(5):494-502. PubMed ID: 17936059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery.
    Stanton DT; Morris TW; Roychoudhury S; Parker CN
    J Chem Inf Comput Sci; 1999; 39(1):21-7. PubMed ID: 9987851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient hit-finding approaches for histone methyltransferases: the key parameters.
    Ahrens T; Bergner A; Sheppard D; Hafenbradl D
    J Biomol Screen; 2012 Jan; 17(1):85-98. PubMed ID: 21990582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Plate cherry picking": a novel semi-sequential screening paradigm for cheaper, faster, information-rich compound selection.
    Crisman TJ; Jenkins JL; Parker CN; Hill WA; Bender A; Deng Z; Nettles JH; Davies JW; Glick M
    J Biomol Screen; 2007 Apr; 12(3):320-7. PubMed ID: 17438067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using clustering techniques to improve hit selection in high-throughput screening.
    Gagarin A; Makarenkov V; Zentilli P
    J Biomol Screen; 2006 Dec; 11(8):903-14. PubMed ID: 17092911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.