These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 25915714)

  • 1. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.
    Shemi A; Ben-Dor S; Vardi A
    Autophagy; 2015 Apr; 11(4):701-15. PubMed ID: 25915714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates.
    Patron NJ; Rogers MB; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1169-75. PubMed ID: 15470245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes.
    Dautermann O; Lohr M
    Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids.
    Strassert JFH; Irisarri I; Williams TA; Burki F
    Nat Commun; 2021 Mar; 12(1):1879. PubMed ID: 33767194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?
    Stiller JW; Huang J; Ding Q; Tian J; Goodwillie C
    BMC Genomics; 2009 Oct; 10():484. PubMed ID: 19843329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic eukaryotes unite: endosymbiosis connects the dots.
    Bhattacharya D; Yoon HS; Hackett JD
    Bioessays; 2004 Jan; 26(1):50-60. PubMed ID: 14696040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
    Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D
    Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.
    Huerlimann R; Zenger KR; Jerry DR; Heimann K
    PLoS One; 2015; 10(7):e0131099. PubMed ID: 26131555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates.
    Dorrell RG; Smith AG
    Eukaryot Cell; 2011 Jul; 10(7):856-68. PubMed ID: 21622904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms.
    Schatz D; Shemi A; Rosenwasser S; Sabanay H; Wolf SG; Ben-Dor S; Vardi A
    New Phytol; 2014 Dec; 204(4):854-63. PubMed ID: 25195618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
    Méheust R; Zelzion E; Bhattacharya D; Lopez P; Bapteste E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3579-84. PubMed ID: 26976593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of autophagy genes in microalgae: Chlorella as a potential model to study mechanism of autophagy.
    Jiang Q; Zhao L; Dai J; Wu Q
    PLoS One; 2012; 7(7):e41826. PubMed ID: 22848622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox partner interactions in the ATG8 lipidation system in microalgae.
    Mallén-Ponce MJ; Gámez-Arcas S; Pérez-Pérez ME
    Free Radic Biol Med; 2023 Jul; 203():58-68. PubMed ID: 37028463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.
    Pérez-Pérez ME; Couso I; Crespo JL
    Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.