These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25916413)
1. Correlation between Energy and Spatial Distribution of Intragap Trap States in the TiO2 Photoanode of Dye-Sensitized Solar Cells. Wang Y; Wu D; Fu LM; Ai XC; Xu D; Zhang JP Chemphyschem; 2015 Jul; 16(10):2253-9. PubMed ID: 25916413 [TBL] [Abstract][Full Text] [Related]
2. Density of state determination of two types of intra-gap traps in dye-sensitized solar cells and its influence on device performance. Wang Y; Wu D; Fu LM; Ai XC; Xu D; Zhang JP Phys Chem Chem Phys; 2014 Jun; 16(23):11626-32. PubMed ID: 24806538 [TBL] [Abstract][Full Text] [Related]
3. Working area effects on the energetic distribution of trap states and charge dynamics of dye-sensitized solar cells. Yan W; Huo MM; Hu R; Wang Y RSC Adv; 2019 Jan; 9(3):1734-1740. PubMed ID: 35518008 [TBL] [Abstract][Full Text] [Related]
4. Trap States Comparison of Mesoporous TiO2 Photoanodes with Different Particle Sizes. Ma Y; Hu L; Mo L; Xi X; Dai S J Nanosci Nanotechnol; 2016 Jun; 16(6):5787-90. PubMed ID: 27427632 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration. Sun Z; Liang M; Chen J Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106 [TBL] [Abstract][Full Text] [Related]
6. Charge Distribution in Nanostructured TiO2 Photoanode Determined by Quantitative Analysis of the Band Edge Unpinning. Mandal D; Hamann TW ACS Appl Mater Interfaces; 2016 Jan; 8(1):419-24. PubMed ID: 26693971 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+. Li Y; Pan K; Wang G; Jiang B; Tian C; Zhou W; Qu Y; Liu S; Feng L; Fu H Dalton Trans; 2013 Jun; 42(22):7971-9. PubMed ID: 23455429 [TBL] [Abstract][Full Text] [Related]
8. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells. Concina I; Vomiero A Small; 2015 Apr; 11(15):1744-74. PubMed ID: 25523717 [TBL] [Abstract][Full Text] [Related]
9. Comparing electron recombination via interfacial modifications in dye-sensitized solar cells. Li L; Chen S; Xu C; Zhao Y; Rudawski NG; Ziegler KJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):20978-84. PubMed ID: 25412271 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy. Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317 [TBL] [Abstract][Full Text] [Related]
11. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961 [TBL] [Abstract][Full Text] [Related]
12. Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. Docampo P; Guldin S; Steiner U; Snaith HJ J Phys Chem Lett; 2013 Mar; 4(5):698-703. PubMed ID: 26281921 [TBL] [Abstract][Full Text] [Related]
13. Electron transport properties in dye-sensitized solar cells with {001} facet-dominant TiO Maitani MM; Tanaka K; Shen Q; Toyoda T; Wada Y Phys Chem Chem Phys; 2017 Aug; 19(33):22129-22140. PubMed ID: 28795712 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin SnO2 scaffolds for TiO2-based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering. Yang S; Hou Y; Xing J; Zhang B; Tian F; Yang XH; Yang HG Chemistry; 2013 Jul; 19(28):9366-70. PubMed ID: 23733334 [TBL] [Abstract][Full Text] [Related]
15. Electron transport and recombination in dye-sensitized mesoporous TiO2 probed by photoinduced charge-conductivity modulation spectroscopy with Monte Carlo modeling. Petrozza A; Groves C; Snaith HJ J Am Chem Soc; 2008 Oct; 130(39):12912-20. PubMed ID: 18767840 [TBL] [Abstract][Full Text] [Related]
16. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study. Dong C; Li X; Zhao W; Jin P; Fan X; Qi J Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451 [TBL] [Abstract][Full Text] [Related]
17. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells. Salvador P; Hidalgo MG; Zaban A; Bisquert J J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020 [TBL] [Abstract][Full Text] [Related]
18. An insight into the role of oxygen vacancy in hydrogenated TiO₂ nanocrystals in the performance of dye-sensitized solar cells. Su T; Yang Y; Na Y; Fan R; Li L; Wei L; Yang B; Cao W ACS Appl Mater Interfaces; 2015 Feb; 7(6):3754-63. PubMed ID: 25621977 [TBL] [Abstract][Full Text] [Related]
19. TiO2 surface modification and characterization with nanosized PbS in dye-sensitized solar cells. Wang P; Wang L; Ma B; Li B; Qiu Y J Phys Chem B; 2006 Jul; 110(29):14406-9. PubMed ID: 16854149 [TBL] [Abstract][Full Text] [Related]
20. Graphene frameworks promoted electron transport in quantum dot-sensitized solar cells. Zhu Y; Meng X; Cui H; Jia S; Dong J; Zheng J; Zhao J; Wang Z; Li L; Zhang L; Zhu Z ACS Appl Mater Interfaces; 2014 Aug; 6(16):13833-40. PubMed ID: 25075630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]