These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 25916501)
1. Biomimetic and synthetic esophageal tissue engineering. Jensen T; Blanchette A; Vadasz S; Dave A; Canfarotta M; Sayej WN; Finck C Biomaterials; 2015 Jul; 57():133-41. PubMed ID: 25916501 [TBL] [Abstract][Full Text] [Related]
2. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Beckstead BL; Pan S; Bhrany AD; Bratt-Leal AM; Ratner BD; Giachelli CM Biomaterials; 2005 Nov; 26(31):6217-28. PubMed ID: 15913763 [TBL] [Abstract][Full Text] [Related]
3. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917 [TBL] [Abstract][Full Text] [Related]
4. Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. Saxena AK; Ainoedhofer H; Höllwarth ME J Pediatr Surg; 2009 May; 44(5):896-901. PubMed ID: 19433165 [TBL] [Abstract][Full Text] [Related]
5. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Fan MR; Gong M; Da LC; Bai L; Li XQ; Chen KF; Li-Ling J; Yang ZM; Xie HQ Biomed Mater; 2014 Feb; 9(1):015012. PubMed ID: 24457267 [TBL] [Abstract][Full Text] [Related]
6. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Kim IG; Wu Y; Park SA; Cho H; Choi JJ; Kwon SK; Shin JW; Chung EJ Tissue Eng Part A; 2019 Nov; 25(21-22):1478-1492. PubMed ID: 30799779 [TBL] [Abstract][Full Text] [Related]
7. Engineering of vaginal tissue in vivo. De Filippo RE; Yoo JJ; Atala A Tissue Eng; 2003 Apr; 9(2):301-6. PubMed ID: 12740092 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581 [TBL] [Abstract][Full Text] [Related]
9. Polyurethane scaffolds seeded with autologous cells can regenerate long esophageal gaps: An esophageal atresia treatment model. Jensen T; Wanczyk H; Sharma I; Mitchell A; Sayej WN; Finck C J Pediatr Surg; 2019 Sep; 54(9):1744-1754. PubMed ID: 30429066 [TBL] [Abstract][Full Text] [Related]
10. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model. Shakhssalim N; Soleimani M; Dehghan MM; Rasouli J; Taghizadeh-Jahed M; Torbati PM; Naji M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():877-884. PubMed ID: 28415542 [TBL] [Abstract][Full Text] [Related]
11. Esophagus tissue engineering: designing and crafting the components for the "hybrid construct" approach. Saxena AK Eur J Pediatr Surg; 2014 Jun; 24(3):246-62. PubMed ID: 24918402 [TBL] [Abstract][Full Text] [Related]
12. Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Saxena AK; Ainoedhofer H; Höllwarth ME Tissue Eng Part C Methods; 2010 Feb; 16(1):109-14. PubMed ID: 19374530 [TBL] [Abstract][Full Text] [Related]
13. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507 [TBL] [Abstract][Full Text] [Related]
14. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
15. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828 [TBL] [Abstract][Full Text] [Related]
16. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. Kuppan P; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395 [TBL] [Abstract][Full Text] [Related]
18. Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. Saxena AK; Kofler K; Ainödhofer H; Höllwarth ME J Gastrointest Surg; 2009 Jun; 13(6):1037-43. PubMed ID: 19277795 [TBL] [Abstract][Full Text] [Related]
19. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490 [TBL] [Abstract][Full Text] [Related]
20. Esophageal muscle cell interaction with biopolymers. Korkmaz M; Yakut T; Narci A; Güvenç BH; Güilten T; Yağmurca M; Yiğit B; Bilir A Med Sci Monit; 2007 Feb; 13(2):BR46-9. PubMed ID: 17261980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]