These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 25916556)
1. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Qiao S; Dennis M; Song X; Vadysirisack DD; Salunke D; Nash Z; Yang Z; Liesa M; Yoshioka J; Matsuzawa S; Shirihai OS; Lee RT; Reed JC; Ellisen LW Nat Commun; 2015 Apr; 6():7014. PubMed ID: 25916556 [TBL] [Abstract][Full Text] [Related]
2. TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice. Gao C; Wang R; Li B; Guo Y; Yin T; Xia Y; Zhang F; Lian K; Liu Y; Wang H; Zhang L; Gao E; Yan W; Tao L Cardiovasc Res; 2020 Mar; 116(3):645-657. PubMed ID: 31241142 [TBL] [Abstract][Full Text] [Related]
3. REDD1 knockdown ameliorates endothelial cell senescence through repressing TXNIP-mediated oxidative stress. Chen Q; Hu R; Qiu H; Li S; Xiang P; Lu Y; Wang X; Wang T; Zhou L; Zhang W; Wen E; Ma L; Yu C Mech Ageing Dev; 2024 Oct; 221():111962. PubMed ID: 39004152 [TBL] [Abstract][Full Text] [Related]
4. The REDD1/TXNIP Complex Accelerates Oxidative Stress-Induced Apoptosis of Nucleus Pulposus Cells through the Mitochondrial Pathway. Yin H; Wang K; Das A; Li G; Song Y; Luo R; Cheung JPY; Zhang T; Li S; Yang C Oxid Med Cell Longev; 2021; 2021():7397516. PubMed ID: 34603601 [TBL] [Abstract][Full Text] [Related]
5. The protease activity of human ATG4B is regulated by reversible oxidative modification. Zheng X; Yang Z; Gu Q; Xia F; Fu Y; Liu P; Yin XM; Li M Autophagy; 2020 Oct; 16(10):1838-1850. PubMed ID: 31880198 [TBL] [Abstract][Full Text] [Related]
6. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Cabrera S; Maciel M; Herrera I; Nava T; Vergara F; Gaxiola M; López-Otín C; Selman M; Pardo A Autophagy; 2015 Apr; 11(4):670-84. PubMed ID: 25906080 [TBL] [Abstract][Full Text] [Related]
7. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Akin D; Wang SK; Habibzadegah-Tari P; Law B; Ostrov D; Li M; Yin XM; Kim JS; Horenstein N; Dunn WA Autophagy; 2014; 10(11):2021-35. PubMed ID: 25483883 [TBL] [Abstract][Full Text] [Related]
8. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Ni Z; He J; Wu Y; Hu C; Dai X; Yan X; Li B; Li X; Xiong H; Li Y; Li S; Xu L; Li Y; Lian J; He F Autophagy; 2018; 14(4):685-701. PubMed ID: 29165041 [TBL] [Abstract][Full Text] [Related]
9. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Zhou J; Chng WJ Mitochondrion; 2013 May; 13(3):163-9. PubMed ID: 22750447 [TBL] [Abstract][Full Text] [Related]
10. Impaired cardiac anti-oxidant activity in diabetes: human and correlative experimental studies. Connelly KA; Advani A; Advani SL; Zhang Y; Kim YM; Shen V; Thai K; Kelly DJ; Gilbert RE Acta Diabetol; 2014 Oct; 51(5):771-82. PubMed ID: 24925443 [TBL] [Abstract][Full Text] [Related]
11. Rab7b modulates autophagic flux by interacting with Atg4B. Kjos I; Borg Distefano M; Sætre F; Repnik U; Holland P; Jones AT; Engedal N; Simonsen A; Bakke O; Progida C EMBO Rep; 2017 Oct; 18(10):1727-1739. PubMed ID: 28835545 [TBL] [Abstract][Full Text] [Related]
12. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Jin HO; Seo SK; Kim YS; Woo SH; Lee KH; Yi JY; Lee SJ; Choe TB; Lee JH; An S; Hong SI; Park IC Oncogene; 2011 Sep; 30(35):3792-801. PubMed ID: 21460850 [TBL] [Abstract][Full Text] [Related]
13. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Li Y; Zhang Y; Wang L; Wang P; Xue Y; Li X; Qiao X; Zhang X; Xu T; Liu G; Li P; Chen C Autophagy; 2017 Jul; 13(7):1145-1160. PubMed ID: 28633005 [TBL] [Abstract][Full Text] [Related]
14. TXNIP contributes to bone loss via promoting the mitochondrial oxidative phosphorylation during glucocorticoid-induced osteoporosis. Mo Y; Lai W; Zhong Y; Hu Z; You M; Du M; Wang P; Wu X; Chen C; He H; Gao Z; Xu Y; Wang D; Cui L; Yang Y Life Sci; 2021 Feb; 266():118938. PubMed ID: 33347878 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Allograft Inflammatory Factor-1 on Inflammation, Oxidative Stress, and Autophagy via miR-34a/ATG4B Pathway in Diabetic Kidney Disease. Jianbing H; Xiaotian L; Jie T; Xueying C; Honge J; Bo Z; Lirong H; Lei Z Oxid Med Cell Longev; 2022; 2022():1668000. PubMed ID: 36345369 [TBL] [Abstract][Full Text] [Related]
17. Reactive oxygen species regulation of autophagy in skeletal muscles. Rahman M; Mofarrahi M; Kristof AS; Nkengfac B; Harel S; Hussain SN Antioxid Redox Signal; 2014 Jan; 20(3):443-59. PubMed ID: 24180497 [TBL] [Abstract][Full Text] [Related]
18. Targeted metabolomics connects thioredoxin-interacting protein (TXNIP) to mitochondrial fuel selection and regulation of specific oxidoreductase enzymes in skeletal muscle. DeBalsi KL; Wong KE; Koves TR; Slentz DH; Seiler SE; Wittmann AH; Ilkayeva OR; Stevens RD; Perry CG; Lark DS; Hui ST; Szweda L; Neufer PD; Muoio DM J Biol Chem; 2014 Mar; 289(12):8106-20. PubMed ID: 24482226 [TBL] [Abstract][Full Text] [Related]
19. Exercise reduces the protein abundance of TXNIP and its interacting partner REDD1 in skeletal muscle: potential role for a PKA-mediated mechanism. Chaves AB; Miranda ER; Mey JT; Blackburn BK; Fuller KNZ; Stearns B; Ludlow A; Williamson DL; Houmard JA; Haus JM J Appl Physiol (1985); 2022 Feb; 132(2):357-366. PubMed ID: 34941434 [TBL] [Abstract][Full Text] [Related]
20. REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice. Miller WP; Toro AL; Barber AJ; Dennis MD Invest Ophthalmol Vis Sci; 2019 May; 60(6):2369-2379. PubMed ID: 31141608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]