BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25916684)

  • 1. Ruthenium-Catalyzed Oxidative Coupling of Primary Amines with Internal Alkynes through C-H Bond Activation: Scope and Mechanistic Studies.
    Ruiz S; Villuendas P; Ortuño MA; Lledós A; Urriolabeitia EP
    Chemistry; 2015 Jun; 21(23):8626-36. PubMed ID: 25916684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
    Ackermann L
    Acc Chem Res; 2014 Feb; 47(2):281-95. PubMed ID: 23379589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary amines as directing groups in the Ru-catalyzed synthesis of isoquinolines, benzoisoquinolines, and thienopyridines.
    Villuendas P; Urriolabeitia EP
    J Org Chem; 2013 Jun; 78(11):5254-63. PubMed ID: 23650873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium-catalyzed oxidative coupling/cyclization of isoquinolones with alkynes through C-H/N-H activation: mechanism study and synthesis of dibenzo[a,g]quinolizin-8-one derivatives.
    Li B; Feng H; Wang N; Ma J; Song H; Xu S; Wang B
    Chemistry; 2012 Oct; 18(40):12873-9. PubMed ID: 22930580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-Catalyzed Formal Dehydrative [4 + 2] Cycloaddition of Enamides and Alkynes for the Synthesis of Highly Substituted Pyridines: Reaction Development and Mechanistic Study.
    Wu J; Xu W; Yu ZX; Wang J
    J Am Chem Soc; 2015 Jul; 137(29):9489-96. PubMed ID: 26158786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ru(II)-catalyzed C-H bond activation for the synthesis of substituted isoquinolinium salts from benzaldehydes, amines, and alkynes.
    Parthasarathy K; Senthilkumar N; Jayakumar J; Cheng CH
    Org Lett; 2012 Jul; 14(13):3478-81. PubMed ID: 22691052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations.
    Ryu JS; Li GY; Marks TJ
    J Am Chem Soc; 2003 Oct; 125(41):12584-605. PubMed ID: 14531704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanism of N-O Bond Cleavage in Rhodium-Catalyzed C-H Bond Functionalization of Quinoline N-oxides with Alkynes: A Computational Study.
    Li Y; Liu S; Qi Z; Qi X; Li X; Lan Y
    Chemistry; 2015 Jul; 21(28):10131-7. PubMed ID: 26059235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scope and mechanistic study of the ruthenium-catalyzed ortho-C-H bond activation and cyclization reactions of arylamines with terminal alkynes.
    Yi CS; Yun SY
    J Am Chem Soc; 2005 Dec; 127(48):17000-6. PubMed ID: 16316246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.
    Li J; John M; Ackermann L
    Chemistry; 2014 Apr; 20(18):5403-8. PubMed ID: 24677682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined experimental and computational investigations of rhodium- and ruthenium-catalyzed C-H functionalization of pyrazoles with alkynes.
    Algarra AG; Cross WB; Davies DL; Khamker Q; Macgregor SA; McMullin CL; Singh K
    J Org Chem; 2014 Mar; 79(5):1954-70. PubMed ID: 24564771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic synthesis of tricyclic quinoline derivatives from the regioselective hydroamination and C-H bond activation reaction of benzocyclic amines and alkynes.
    Yi CS; Yun SY; Guzei IA
    J Am Chem Soc; 2005 Apr; 127(16):5782-3. PubMed ID: 15839664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.
    Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV
    J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-atom transfer in reactions of organic radicals with [Co(II)(por)]* (por = porphyrinato) and in subsequent addition of [Co(H)(por)] to olefins.
    de Bruin B; Dzik WI; Li S; Wayland BB
    Chemistry; 2009; 15(17):4312-20. PubMed ID: 19266521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation.
    Murahashi S; Nakae T; Terai H; Komiya N
    J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easy access to isoquinolines and tetrahydroquinolines from ketoximes and alkynes via rhodium-catalyzed C-H bond activation.
    Parthasarathy K; Cheng CH
    J Org Chem; 2009 Dec; 74(24):9359-64. PubMed ID: 19894732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New reactions of 1-alkynes catalyzed by transition metal complexes.
    Wakatsuki Y; Hou Z; Tokunaga M
    Chem Rec; 2003; 3(3):144-57. PubMed ID: 12900935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium-catalyzed C-H/O-H and C-H/N-H bond functionalizations: oxidative annulations of cyclopropyl-substituted alkynes.
    Deponti M; Kozhushkov SI; Yufit DS; Ackermann L
    Org Biomol Chem; 2013 Jan; 11(1):142-8. PubMed ID: 23111695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium(III)-catalyzed cascade oxidative annulation reactions of aryl imidazolium salts with alkynes involving multiple C-H bond activation.
    Ge Q; Li B; Song H; Wang B
    Org Biomol Chem; 2015 Jul; 13(28):7695-710. PubMed ID: 26083396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory calculations on oxidative C-C bond cleavage and N-O bond formation of [Ru(II)(bpy)2(diamine)](2+) via reactive ruthenium imide intermediates.
    Guan X; Law SM; Tse CW; Huang JS; Che CM
    Chemistry; 2014 Nov; 20(46):15122-30. PubMed ID: 25267445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.