BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25916705)

  • 1. Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.
    Bialic M; Coulon V; Drac M; Gostan T; Schwob E
    Methods Mol Biol; 2015; 1300():67-78. PubMed ID: 25916705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication dynamics: biases and robustness of DNA fiber analysis.
    Técher H; Koundrioukoff S; Azar D; Wilhelm T; Carignon S; Brison O; Debatisse M; Le Tallec B
    J Mol Biol; 2013 Nov; 425(23):4845-55. PubMed ID: 23557832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of DNA combing for studying DNA replication in vivo in yeast and mammalian cells.
    Schwob E; de Renty C; Coulon V; Gostan T; Boyer C; Camet-Gabut L; Amato C
    Methods Mol Biol; 2009; 521():673-87. PubMed ID: 19563133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells.
    Stanojcic S; Sollelis L; Kuk N; Crobu L; Balard Y; Schwob E; Bastien P; Pagès M; Sterkers Y
    Sci Rep; 2016 Mar; 6():23142. PubMed ID: 26976742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing.
    Kaykov A; Nurse P
    Methods Mol Biol; 2018; 1721():9-24. PubMed ID: 29423843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells.
    Zhang Y; Huang L; Fu H; Smith OK; Lin CM; Utani K; Rao M; Reinhold WC; Redon CE; Ryan M; Kim R; You Y; Hanna H; Boisclair Y; Long Q; Aladjem MI
    Nat Commun; 2016 Jun; 7():11748. PubMed ID: 27272143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General and specific replication profiles are detected in normal human cells by genome-wide and single-locus molecular combing.
    Palumbo E; Tosoni E; Russo A
    Exp Cell Res; 2013 Dec; 319(20):3081-93. PubMed ID: 24126019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution analysis of Mammalian DNA replication units.
    Chagin VO; Reinhart M; Cardoso MC
    Methods Mol Biol; 2015; 1300():43-65. PubMed ID: 25916704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of DNA Replication in Fission Yeast by Combing.
    Iyer DR; Das S; Rhind N
    Cold Spring Harb Protoc; 2018 Mar; 2018(3):. PubMed ID: 28733405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed.
    Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT
    Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.
    Kuriya K; Higashiyama E; Avşar-Ban E; Tamaru Y; Ogata S; Takebayashi S; Ogata M; Okumura K
    Zebrafish; 2015 Dec; 12(6):432-9. PubMed ID: 26540100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Replicating Yeast Chromosomes by DNA Combing.
    Gallo D; Wang G; Yip CM; Brown GW
    Cold Spring Harb Protoc; 2016 Feb; 2016(2):pdb.prot085118. PubMed ID: 26832684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule Analysis of DNA Replication Dynamics in Budding Yeast and Human Cells by DNA Combing.
    Tourrière H; Saksouk J; Lengronne A; Pasero P
    Bio Protoc; 2017 Jun; 7(11):e2305. PubMed ID: 34541074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping sites where replication initiates in mammalian cells using DNA fibers.
    Takebayashi SI; Manders EM; Kimura H; Taguchi H; Okumura K
    Exp Cell Res; 2001 Dec; 271(2):263-8. PubMed ID: 11716538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of DNA combing to study DNA replication in Xenopus and human cell-free systems.
    Marheineke K; Goldar A; Krude T; Hyrien O
    Methods Mol Biol; 2009; 521():575-603. PubMed ID: 19563130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system.
    Marheineke K; Hyrien O; Krude T
    Nucleic Acids Res; 2005; 33(21):6931-41. PubMed ID: 16332696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asynchronous replication dynamics of imprinted and non-imprinted chromosome regions in early mouse embryos.
    May A; Reifenberg K; Zechner U; Haaf T
    Exp Cell Res; 2008 Sep; 314(15):2788-95. PubMed ID: 18675801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA fiber combing protocol using in-house reagents and coverslips to analyze replication fork dynamics in mammalian cells.
    Moore G; Jimenez Sainz J; Jensen RB
    STAR Protoc; 2022 Jun; 3(2):101371. PubMed ID: 35573479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.