BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25916771)

  • 1. Theoretical Computer-Aided Mutagenic Study on the Triple Green Fluorescent Protein Mutant S65T/H148D/Y145F.
    Armengol P; Gelabert R; Moreno M; Lluch JM
    Chemphyschem; 2015 Jul; 16(10):2134-9. PubMed ID: 25916771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the structure-spectrum relationship in S65T/H148D and E222Q/H148D green fluorescent protein mutants: a theoretical assessment.
    Armengol P; Gelabert R; Moreno M; Lluch JM
    Org Biomol Chem; 2014 Dec; 12(48):9845-52. PubMed ID: 25355539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted asynchronous hula-twist photoisomerization in the S65T/H148D mutant of green fluorescent protein.
    Zhang Q; Chen X; Cui G; Fang WH; Thiel W
    Angew Chem Int Ed Engl; 2014 Aug; 53(33):8649-53. PubMed ID: 25044736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling how an archetypal fluorescent protein operates: theoretical perspective on the ultrafast excited state dynamics of GFP variant S65T/H148D.
    Armengol P; Gelabert R; Moreno M; Lluch JM
    J Phys Chem B; 2015 Feb; 119(6):2274-91. PubMed ID: 25144880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 3. Short- and long-time dynamics of the excited-state proton transfer.
    Leiderman P; Genosar L; Huppert D; Shu X; Remington SJ; Solntsev KM; Tolbert LM
    Biochemistry; 2007 Oct; 46(43):12026-36. PubMed ID: 17918961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast action chemistry in slow motion: atomistic description of the excitation and fluorescence processes in an archetypal fluorescent protein.
    Armengol P; Spörkel L; Gelabert R; Moreno M; Thiel W; Lluch JM
    Phys Chem Chem Phys; 2018 Apr; 20(16):11067-11080. PubMed ID: 29620123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies.
    Shu X; Kallio K; Shi X; Abbyad P; Kanchanawong P; Childs W; Boxer SG; Remington SJ
    Biochemistry; 2007 Oct; 46(43):12005-13. PubMed ID: 17918959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
    Stoner-Ma D; Jaye AA; Ronayne KL; Nappa J; Meech SR; Tonge PJ
    J Am Chem Soc; 2008 Jan; 130(4):1227-35. PubMed ID: 18179211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast dynamics of protein proton transfer on short hydrogen bond potential energy surfaces: S65T/H148D GFP.
    Kondo M; Heisler IA; Stoner-Ma D; Tonge PJ; Meech SR
    J Am Chem Soc; 2010 Feb; 132(5):1452-3. PubMed ID: 19916498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of the absorption spectra of green fluorescent protein mutants.
    Patnaik SS; Trohalaki S; Naik RR; Stone MO; Pachter R
    Biopolymers; 2007 Feb; 85(3):253-63. PubMed ID: 17206623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 2. Unusual photophysical properties.
    Shi X; Abbyad P; Shu X; Kallio K; Kanchanawong P; Childs W; Remington SJ; Boxer SG
    Biochemistry; 2007 Oct; 46(43):12014-25. PubMed ID: 17918960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling Light-Induced Proton Transfer from the GFP Chromophore.
    Langeland J; Persen NW; Gruber E; Kiefer HV; Kabylda AM; Bochenkova AV; Andersen LH
    Chemphyschem; 2021 May; 22(9):833-841. PubMed ID: 33591586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental identification and theoretical analysis of a thermally stabilized green fluorescent protein variant.
    Akiyama S; Suenaga A; Kobayashi T; Kamioka T; Taiji M; Kuroda Y
    Biochemistry; 2012 Oct; 51(40):7974-82. PubMed ID: 22963334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between pH, structure, and absorption spectrum of Cerulean: a study by molecular dynamics and TD DFT calculations.
    Vallverdu G; Demachy I; Mérola F; Pasquier H; Ridard J; Lévy B
    Proteins; 2010 Mar; 78(4):1040-54. PubMed ID: 19927324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinduced proton transfer inside an engineered green fluorescent protein: a stepwise-concerted-hybrid reaction.
    Tang L; Wang Y; Zhu L; Kallio K; Remington SJ; Fang C
    Phys Chem Chem Phys; 2018 May; 20(18):12517-12526. PubMed ID: 29708241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States.
    Yoon E; Konold PE; Lee J; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Jun; 7(12):2170-4. PubMed ID: 27214167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein.
    Megley CM; Dickson LA; Maddalo SL; Chandler GJ; Zimmer M
    J Phys Chem B; 2009 Jan; 113(1):302-8. PubMed ID: 19067572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments.
    Liu Y; Kim HR; Heikal AA
    J Phys Chem B; 2006 Nov; 110(47):24138-46. PubMed ID: 17125385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.