BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 25917094)

  • 1. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells.
    Malinarich F; Duan K; Hamid RA; Bijin A; Lin WX; Poidinger M; Fairhurst AM; Connolly JE
    J Immunol; 2015 Jun; 194(11):5174-86. PubMed ID: 25917094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short communication: high insulin concentrations inhibit fatty acid oxidation-related gene expression in calf hepatocytes cultured in vitro.
    Li P; Wu CC; Long M; Zhang Y; Li XB; He JB; Wang Z; Liu GW
    J Dairy Sci; 2013 Jun; 96(6):3840-4. PubMed ID: 23567053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New fatty acid oxidation inhibitors with increased potency lacking adverse metabolic and electrophysiological properties.
    Koltun DO; Marquart TA; Shenk KD; Elzein E; Li Y; Nguyen M; Kerwar S; Zeng D; Chu N; Soohoo D; Hao J; Maydanik VY; Lustig DA; Ng KJ; Fraser H; Zablocki JA
    Bioorg Med Chem Lett; 2004 Jan; 14(2):549-52. PubMed ID: 14698201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the Metabolic Phenotype of Bone Marrow-Derived Dendritic Cells by Assessing Their Oxygen Consumption and Extracellular Acidification.
    Wei HJ; Letterio JJ; Pareek TK
    Methods Mol Biol; 2020; 2184():185-196. PubMed ID: 32808226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation.
    Sen K; Pati R; Jha A; Mishra GP; Prusty S; Chaudhary S; Swetalika S; Podder S; Sen A; Swain M; Nanda RK; Raghav SK
    Redox Biol; 2023 Feb; 59():102575. PubMed ID: 36565644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.
    Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR
    Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractory chronic stable angina--now what?
    Conti CR
    Clin Cardiol; 2004 Jul; 27(7):375-6. PubMed ID: 15298034
    [No Abstract]   [Full Text] [Related]  

  • 9. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice.
    Philp LK; Heilbronn LK; Janovska A; Wittert GA
    PLoS One; 2015; 10(2):e0117494. PubMed ID: 25658742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequestration of coenzyme A by the industrial surfactant, Toximul MP8. A possible role in the inhibition of fatty-acid beta-oxidation in a surfactant/influenza B virus mouse model for acute hepatic encephalopathy.
    Murphy MG; Crocker JF; Lee SH; Acott P; Her H
    Biochim Biophys Acta; 1997 Jul; 1361(1):103-13. PubMed ID: 9247094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE1α to Promote Fatty Acid Oxidation for Immune Function.
    Basit F; de Vries IJM
    Front Immunol; 2019; 10():2386. PubMed ID: 31681280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism Is Central to Tolerogenic Dendritic Cell Function.
    Sim WJ; Ahl PJ; Connolly JE
    Mediators Inflamm; 2016; 2016():2636701. PubMed ID: 26980944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function.
    Wu D; Sanin DE; Everts B; Chen Q; Qiu J; Buck MD; Patterson A; Smith AM; Chang CH; Liu Z; Artyomov MN; Pearce EL; Cella M; Pearce EJ
    Immunity; 2016 Jun; 44(6):1325-36. PubMed ID: 27332732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic mechanisms in heart failure.
    Ashrafian H; Frenneaux MP; Opie LH
    Circulation; 2007 Jul; 116(4):434-48. PubMed ID: 17646594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of yeast m
    Yadav PK; Rajvanshi PK; Rajasekharan R
    Curr Genet; 2018 Apr; 64(2):417-422. PubMed ID: 29043484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Control of Dendritic Cell Functions: Digesting Information.
    Wculek SK; Khouili SC; Priego E; Heras-Murillo I; Sancho D
    Front Immunol; 2019; 10():775. PubMed ID: 31073300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent Coordination of the CHKB and CPT1B Genes in Eutherian Mammals: Implications for the Origin of Brown Adipose Tissue.
    Patel BV; Yao F; Howenstine A; Takenaka R; Hyatt JA; Sears KE; Shewchuk BM
    J Mol Biol; 2020 Nov; 432(23):6127-6145. PubMed ID: 33058877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medium-chain fatty acids undergo elongation before beta-oxidation in fibroblasts.
    Jones PM; Butt Y; Messmer B; Boriak R; Bennett MJ
    Biochem Biophys Res Commun; 2006 Jul; 346(1):193-7. PubMed ID: 16750167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid oxidation complex from Escherichia coli.
    Binstock JF; Schulz H
    Methods Enzymol; 1981; 71 Pt C():403-11. PubMed ID: 7024730
    [No Abstract]   [Full Text] [Related]  

  • 20. 4-bromotiglic acid, a novel inhibitor of thiolases and a tool for assessing the cooperation between the membrane-bound and soluble beta-oxidation systems of rat liver mitochondria.
    Liang X; Schulz H
    Biochemistry; 1998 Nov; 37(44):15548-54. PubMed ID: 9799519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.