BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25917109)

  • 1. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses.
    Liu J; Whalley HJ; Knight MR
    New Phytol; 2015 Oct; 208(1):174-87. PubMed ID: 25917109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin binding transcription activators: An interplay between calcium signalling and plant stress tolerance.
    Noman M; Aysha J; Ketehouli T; Yang J; Du L; Wang F; Li H
    J Plant Physiol; 2021 Jan; 256():153327. PubMed ID: 33302232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors.
    Benn G; Wang CQ; Hicks DR; Stein J; Guthrie C; Dehesh K
    Plant J; 2014 Oct; 80(1):82-92. PubMed ID: 25039701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures.
    Lenzoni G; Liu J; Knight MR
    New Phytol; 2018 Mar; 217(4):1598-1609. PubMed ID: 29218709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response.
    Hau B; Symonds K; Teresinski H; Janssen A; Duff L; Smith M; Benidickson K; Plaxton W; Snedden WA
    Plant Cell Physiol; 2024 Feb; 65(2):282-300. PubMed ID: 38036467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal calmodulin levels are controlled by CAMTA transcription factors.
    Vuong-Brender TT; Flynn S; Vallis Y; de Bono M
    Elife; 2021 Sep; 10():. PubMed ID: 34499028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-binding transcription activators and perspectives for applications in biotechnology.
    Shen C; Yang Y; Du L; Wang H
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10379-85. PubMed ID: 26450508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription.
    Liu J; Lenzoni G; Knight MR
    Plant Physiol; 2020 Apr; 182(4):1743-1761. PubMed ID: 31744935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel family of calmodulin-binding transcription activators in multicellular organisms.
    Bouché N; Scharlat A; Snedden W; Bouchez D; Fromm H
    J Biol Chem; 2002 Jun; 277(24):21851-61. PubMed ID: 11925432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis calmodulin-like proteins CML13 and CML14 interact with proteins that have IQ domains.
    Teresinski HJ; Hau B; Symonds K; Kilburn R; Munro KA; Doner NM; Mullen R; Li VH; Snedden WA
    Plant Cell Environ; 2023 Aug; 46(8):2470-2491. PubMed ID: 37222394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses.
    Galon Y; Snir O; Fromm H
    Plant Signal Behav; 2010 Oct; 5(10):1311-4. PubMed ID: 20930517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Analysis of Calmodulin Binding Transcription Activator (CAMTA) Gene Family in Peach (
    Yang C; Li Z; Cao X; Duan W; Wei C; Zhang C; Jiang D; Li M; Chen K; Qiao Y; Liu H; Zhang B
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus.
    Bürstenbinder K; Möller B; Plötner R; Stamm G; Hause G; Mitra D; Abel S
    Plant Physiol; 2017 Mar; 173(3):1692-1708. PubMed ID: 28115582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium decoding mechanisms in plants.
    Hashimoto K; Kudla J
    Biochimie; 2011 Dec; 93(12):2054-9. PubMed ID: 21658427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis.
    Yoo JH; Park CY; Kim JC; Heo WD; Cheong MS; Park HC; Kim MC; Moon BC; Choi MS; Kang YH; Lee JH; Kim HS; Lee SM; Yoon HW; Lim CO; Yun DJ; Lee SY; Chung WS; Cho MJ
    J Biol Chem; 2005 Feb; 280(5):3697-706. PubMed ID: 15569682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.
    Zhu X; Perez M; Aldon D; Galaud JP
    Plant Signal Behav; 2017 May; 12(5):e1322246. PubMed ID: 28471263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae.
    Rahman H; Yang J; Xu YP; Munyampundu JP; Cai XZ
    Front Plant Sci; 2016; 7():177. PubMed ID: 26973658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid kinetics of calcium dissociation from plant calmodulin and calmodulin-like proteins and effect of target peptides.
    Troilo F; Pedretti M; Travaglini-Allocatelli C; Astegno A; Di Matteo A
    Biochem Biophys Res Commun; 2022 Jan; 590():103-108. PubMed ID: 34974297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses.
    Xi J; Qiu Y; Du L; Poovaiah BW
    Plant Sci; 2012 Apr; 185-186():274-80. PubMed ID: 22325890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the CqCAMTA gene family reveals the role of CqCAMTA03 in drought tolerance.
    Zhu X; Wang B; Wei X; Du X
    BMC Plant Biol; 2022 Sep; 22(1):428. PubMed ID: 36071408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.