These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25917201)
1. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study. Fortuny G; Herrero J; Puigjaner D; Olivé C; Marimon F; Garcia-Bennett J; Rodríguez D J Biomech; 2015 Jul; 48(10):2047-53. PubMed ID: 25917201 [TBL] [Abstract][Full Text] [Related]
2. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438 [TBL] [Abstract][Full Text] [Related]
3. Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model. López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F; Garcia-Bennett J Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27505011 [TBL] [Abstract][Full Text] [Related]
4. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
5. Wall shear stress in portal vein of cirrhotic patients with portal hypertension. Wei W; Pu YS; Wang XK; Jiang A; Zhou R; Li Y; Zhang QJ; Wei YJ; Chen B; Li ZF World J Gastroenterol; 2017 May; 23(18):3279-3286. PubMed ID: 28566887 [TBL] [Abstract][Full Text] [Related]
6. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Ali D; Sen S Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377 [TBL] [Abstract][Full Text] [Related]
7. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
8. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
9. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm. Marrero VL; Tichy JA; Sahni O; Jansen KE J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921 [TBL] [Abstract][Full Text] [Related]
10. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava. Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA Ann Biomed Eng; 2016 Dec; 44(12):3568-3582. PubMed ID: 27272211 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Caballero AD; Laín S Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1200-1216. PubMed ID: 24559110 [TBL] [Abstract][Full Text] [Related]
12. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460 [TBL] [Abstract][Full Text] [Related]
13. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design. Dutra RF; Zinani FSF; Rocha LAO; Biserni C Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083 [TBL] [Abstract][Full Text] [Related]
14. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633 [TBL] [Abstract][Full Text] [Related]
15. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice. De Wilde D; Trachet B; De Meyer G; Segers P J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001 [TBL] [Abstract][Full Text] [Related]
16. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? Arzani A J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924 [TBL] [Abstract][Full Text] [Related]
17. Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study. Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ J Korean Neurosurg Soc; 2019 Mar; 62(2):183-192. PubMed ID: 30840973 [TBL] [Abstract][Full Text] [Related]
18. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
19. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Cavazzuti M; Atherton MA; Collins MW; Barozzi GS Proc Inst Mech Eng H; 2011 Jun; 225(6):597-609. PubMed ID: 22034743 [TBL] [Abstract][Full Text] [Related]
20. Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Bappoo N; Kelsey LJ; Parker L; Crough T; Moran CM; Thomson A; Holmes MC; Wyrwoll CS; Doyle BJ Biomech Model Mechanobiol; 2017 Aug; 16(4):1361-1372. PubMed ID: 28258413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]