These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25917201)
21. Influence of non-Newtonian behavior of blood on flow in an elastic artery model. Dutta A; Tarbell JM J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082 [TBL] [Abstract][Full Text] [Related]
22. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels. Garud KS; Jeong S; Lee MY Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673 [TBL] [Abstract][Full Text] [Related]
23. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Khan MO; Steinman DA; Valen-Sendstad K Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717 [TBL] [Abstract][Full Text] [Related]
24. A comparative CFD study of four inferior vena cava filters. López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2990. PubMed ID: 29603681 [TBL] [Abstract][Full Text] [Related]
25. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs. Hippelheuser JE; Lauric A; Cohen AD; Malek AM J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269 [TBL] [Abstract][Full Text] [Related]
26. Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula? Javid Mahmoudzadeh Akherat SM; Cassel K; Boghosian M; Dhar P; Hammes M J Biomech Eng; 2017 Apr; 139(4):0445041-9. PubMed ID: 28249082 [TBL] [Abstract][Full Text] [Related]
27. Investigating the impact of non-Newtonian blood models within a heart pump. Al-Azawy MG; Turan A; Revell A Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069 [TBL] [Abstract][Full Text] [Related]
28. Size-Dependent Distribution of Patient-Specific Hemodynamic Factors in Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics. Lee UY; Chung GH; Jung J; Kwak HS Diagnostics (Basel); 2020 Jan; 10(2):. PubMed ID: 31991621 [TBL] [Abstract][Full Text] [Related]
29. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula. De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494 [TBL] [Abstract][Full Text] [Related]
30. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations. Mirza A; Ramaswamy S J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599346 [TBL] [Abstract][Full Text] [Related]
32. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis. Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548 [TBL] [Abstract][Full Text] [Related]
33. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis. Liu H; Lan L; Abrigo J; Ip HL; Soo Y; Zheng D; Wong KS; Wang D; Shi L; Leung TW; Leng X Front Physiol; 2021; 12():718540. PubMed ID: 34552505 [TBL] [Abstract][Full Text] [Related]
35. Hemodynamic analysis for stenosis microfluidic model of thrombosis with refined computational fluid dynamics simulation. Zhao YC; Vatankhah P; Goh T; Michelis R; Kyanian K; Zhang Y; Li Z; Ju LA Sci Rep; 2021 Mar; 11(1):6875. PubMed ID: 33767279 [TBL] [Abstract][Full Text] [Related]
36. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics. Saho T; Onishi H Radiol Phys Technol; 2015 Jul; 8(2):258-65. PubMed ID: 25911446 [TBL] [Abstract][Full Text] [Related]
37. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment. Walker AM; Johnston CR; Rival DE J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783 [TBL] [Abstract][Full Text] [Related]
38. Hemodynamic analysis of hybrid treatment for thoracoabdominal aortic aneurysm based on Newtonian and non-Newtonian models in a patient-specific model. Wen J; Wang J; Peng L; Yuan D; Zheng T Comput Methods Biomech Biomed Engin; 2023 Feb; 26(2):209-221. PubMed ID: 35414317 [TBL] [Abstract][Full Text] [Related]
39. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. Chen J; Lu XY J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598 [TBL] [Abstract][Full Text] [Related]
40. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]