BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25917559)

  • 1. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.
    Keshavarz A; Zilouei H; Abdolmaleki A; Asadinezhad A
    J Environ Manage; 2015 Jul; 157():279-86. PubMed ID: 25917559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water.
    Santos OS; Coelho da Silva M; Silva VR; Mussel WN; Yoshida MI
    J Hazard Mater; 2017 Feb; 324(Pt B):406-413. PubMed ID: 27866760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup.
    Wu D; Fang L; Qin Y; Wu W; Mao C; Zhu H
    Mar Pollut Bull; 2014 Jul; 84(1-2):263-7. PubMed ID: 24856092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ reduced graphene oxide-based polyurethane sponge hollow tube for continuous oil removal from water surface.
    Hao J; Wang Z; Xiao C; Zhao J; Chen L
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4837-4845. PubMed ID: 29199364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crude oil removal from aqueous solution using raw and carbonized Xanthoceras sorbifolia shells.
    Liu L; Wang L; Song W; Yang L; Yin L; Xia S; Wang H; Strong PJ; Song Z
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29325-29334. PubMed ID: 30121766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of recycled wool-based nonwoven material for the removal of oils from water.
    Radetic M; Ilic V; Radojevic D; Miladinovic R; Jocic D; Jovancic P
    Chemosphere; 2008 Jan; 70(3):525-30. PubMed ID: 17707883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crude oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues.
    Martins LS; Zanini NC; Maia LS; Souza AG; Barbosa RFS; Rosa DS; Mulinari DR
    Chemosphere; 2021 Mar; 267():129288. PubMed ID: 33352367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of amoxicillin removal from aqueous environment by applying functionalized carbon nanotube.
    Bazregari M; Farhadian N
    Environ Technol; 2018 Sep; 39(17):2231-2242. PubMed ID: 28691587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies.
    Babaei AA; Lima EC; Takdastan A; Alavi N; Goudarzi G; Vosoughi M; Hassani G; Shirmardi M
    Water Sci Technol; 2016; 74(5):1202-16. PubMed ID: 27642840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.
    Alessandrello MJ; Juárez Tomás MS; Raimondo EE; Vullo DL; Ferrero MA
    Mar Pollut Bull; 2017 Sep; 122(1-2):156-160. PubMed ID: 28641883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions.
    Khakpour R; Tahermansouri H
    Int J Biol Macromol; 2018 Apr; 109():598-610. PubMed ID: 29275204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies.
    Nayak AK; Pal A
    J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mn
    Ogbu I; Ibeto C; Nwanya AC; Okoye C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(13-14):1124-1137. PubMed ID: 36580042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue.
    Ren L; Tang Z; Du J; Chen L; Qiang T
    J Hazard Mater; 2021 Sep; 417():126130. PubMed ID: 34229397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes.
    Gupta A; Vidyarthi SR; Sankararamakrishnan N
    J Hazard Mater; 2014 Jun; 274():132-44. PubMed ID: 24780855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies.
    Sabna V; Thampi SG; Chandrakaran S
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):390-397. PubMed ID: 26394684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.
    Paulauskiene T
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9981-9991. PubMed ID: 29376214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment.
    Shi Y; Ma L; Hou S; Dou M; Li Y; Du W; Chen G
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic adsorption and biodegradation of heavy crude oil by a novel hybrid matrix containing immobilized Bacillus licheniformis: Aqueous phase and soil bioremediation.
    Partovinia A; Soorki AA; Koosha M
    Ecotoxicol Environ Saf; 2021 Oct; 222():112505. PubMed ID: 34273849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.