These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25917599)

  • 1. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.
    Bae C; Han SW; Song YR; Kim BY; Lee HJ; Lee JM; Yeam I; Heu S; Oh CS
    Theor Appl Genet; 2015 Jul; 128(7):1219-29. PubMed ID: 25917599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis.
    Ombiro GS; Sawai T; Noutoshi Y; Nishina Y; Matsui H; Yamamoto M; Toyoda K; Ichinose Y
    Microbiol Res; 2018 Oct; 215():29-35. PubMed ID: 30172306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of common bacterial blight bacteria with disease resistance quantitative trait loci in common bean.
    Duncan RW; Singh SP; Gilbertson RL
    Phytopathology; 2011 Apr; 101(4):425-35. PubMed ID: 21391823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn.
    Roper MC
    Mol Plant Pathol; 2011 Sep; 12(7):628-37. PubMed ID: 21726365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominant, Heritable Resistance to Stewart's Wilt in Maize Is Associated with an Enhanced Vascular Defense Response to Infection with
    Doblas-Ibáñez P; Deng K; Vasquez MF; Giese L; Cobine PA; Kolkman JM; King H; Jamann TM; Balint-Kurti P; De La Fuente L; Nelson RJ; Mackey D; Smith LG
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1581-1597. PubMed ID: 31657672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-Pathogenic
    Truchon AN; Dalsing BL; Khokhani D; MacIntyre A; McDonald BR; Ailloud F; Klassen J; Gonzalez-Orta ET; Currie C; Prior P; Lowe-Power TM; Allen C
    mBio; 2023 Feb; 14(1):e0318822. PubMed ID: 36744950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium.
    Hiery E; Adam S; Reid S; Hofmann J; Sonnewald S; Burkovski A
    J Biotechnol; 2013 Dec; 168(4):348-54. PubMed ID: 24060828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.
    Wally O; Punja ZK
    GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top 10 plant pathogenic bacteria in molecular plant pathology.
    Mansfield J; Genin S; Magori S; Citovsky V; Sriariyanum M; Ronald P; Dow M; Verdier V; Beer SV; Machado MA; Toth I; Salmond G; Foster GD
    Mol Plant Pathol; 2012 Aug; 13(6):614-29. PubMed ID: 22672649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbe Profile:
    Burbank LP; Roper MC
    Microbiology (Reading); 2021 Oct; 167(10):. PubMed ID: 34596503
    [No Abstract]   [Full Text] [Related]  

  • 11. Embryo Localization Enhances the Survival of Acidovorax citrulli in Watermelon Seeds.
    Dutta B; Schneider RW; Robertson CL; Walcott RR
    Phytopathology; 2016 Apr; 106(4):330-8. PubMed ID: 26756827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoclusters with Ag
    Orfei B; Moretti C; Loreti S; Tatulli G; Onofri A; Scotti L; Aceto A; Buonaurio R
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4519-4531. PubMed ID: 37289240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunity and starvation: new opportunities to elevate disease resistance in crops.
    Oliva R; Quibod IL
    Curr Opin Plant Biol; 2017 Aug; 38():84-91. PubMed ID: 28505583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap.
    González JF; Degrassi G; Devescovi G; De Vleesschauwer D; Höfte M; Myers MP; Venturi V
    J Proteomics; 2012 Oct; 75(18):5911-9. PubMed ID: 22835776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.
    Rogers EE
    Mol Plant Microbe Interact; 2012 Jun; 25(6):747-54. PubMed ID: 22397407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering plant disease resistance based on TAL effectors.
    Schornack S; Moscou MJ; Ward ER; Horvath DM
    Annu Rev Phytopathol; 2013; 51():383-406. PubMed ID: 23725472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host.
    Vojnov AA; do Amaral AM; Dow JM; Castagnaro AP; Marano MR
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):467-77. PubMed ID: 20449739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthomonas oryzae pathovars: model pathogens of a model crop.
    Niño-Liu DO; Ronald PC; Bogdanove AJ
    Mol Plant Pathol; 2006 Sep; 7(5):303-24. PubMed ID: 20507449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contribution of cell and molecular biology and genetics to plant protection].
    Durand-Tardif M; Pelletier G
    C R Biol; 2003 Jan; 326(1):23-35. PubMed ID: 12741179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice.
    Li T; Huang S; Zhou J; Yang B
    Mol Plant; 2013 May; 6(3):781-9. PubMed ID: 23430045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.