BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25917846)

  • 1. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.
    Chigbo C
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):777-82. PubMed ID: 25917846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.
    Chigbo C; Batty L
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):3051-9. PubMed ID: 24185906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil.
    Chigbo C; Batty L
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8955-63. PubMed ID: 23749204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil.
    Chigbo C; Batty L
    J Environ Manage; 2013 Nov; 129():18-24. PubMed ID: 23792886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (
    Menhas S; Hayat K; Niazi NK; Zhou P; Amna ; Bundschuh J; Naeem M; Munis MFH; Yang X; Chaudhary HJ
    Int J Phytoremediation; 2021; 23(6):585-596. PubMed ID: 33166474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.
    Liao C; Xu W; Lu G; Liang X; Guo C; Yang C; Dang Z
    Int J Phytoremediation; 2015; 17(7):693-700. PubMed ID: 25976883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.
    Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE
    Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula.
    Sun Y; Zhou Q; Xu Y; Wang L; Liang X
    J Hazard Mater; 2011 Feb; 186(2-3):2075-82. PubMed ID: 21269763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.
    Sangthong C; Setkit K; Prapagdee B
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):756-64. PubMed ID: 26336850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance of Ornamental Succulent Plant Crown of Thorns (Euphorbia milli) to Chromium and its Remediation.
    Ramana S; Biswas AK; Singh AB; Ajay ; Ahirwar NK; Subba Rao A
    Int J Phytoremediation; 2015; 17(1-6):363-8. PubMed ID: 25409249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Chromium from Soils Cultivated with Maize (Zea Mays) After the Addition of Natural Minerals as Soil Amendments.
    Μolla A; Ioannou Z; Mollas S; Skoufogianni E; Dimirkou A
    Bull Environ Contam Toxicol; 2017 Mar; 98(3):347-352. PubMed ID: 28233031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and translocation of benzo[a]pyrene (B[a]P) in two ornamental plants and dissipation in soil.
    Sun Y; Zhou Q
    Ecotoxicol Environ Saf; 2016 Feb; 124():74-81. PubMed ID: 26476328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of
    Salimizadeh M; Shirvani M; Shariatmadari H; Mortazavi MS
    Int J Phytoremediation; 2020; 22(2):176-183. PubMed ID: 31424289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Zea mays L. in phytoremediation of trichloroethylene.
    Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.