These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25917846)

  • 1. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.
    Chigbo C
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):777-82. PubMed ID: 25917846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.
    Chigbo C; Batty L
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):3051-9. PubMed ID: 24185906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil.
    Chigbo C; Batty L
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8955-63. PubMed ID: 23749204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil.
    Chigbo C; Batty L
    J Environ Manage; 2013 Nov; 129():18-24. PubMed ID: 23792886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (
    Menhas S; Hayat K; Niazi NK; Zhou P; Amna ; Bundschuh J; Naeem M; Munis MFH; Yang X; Chaudhary HJ
    Int J Phytoremediation; 2021; 23(6):585-596. PubMed ID: 33166474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.
    Liao C; Xu W; Lu G; Liang X; Guo C; Yang C; Dang Z
    Int J Phytoremediation; 2015; 17(7):693-700. PubMed ID: 25976883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.
    Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE
    Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula.
    Sun Y; Zhou Q; Xu Y; Wang L; Liang X
    J Hazard Mater; 2011 Feb; 186(2-3):2075-82. PubMed ID: 21269763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.
    Sangthong C; Setkit K; Prapagdee B
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):756-64. PubMed ID: 26336850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance of Ornamental Succulent Plant Crown of Thorns (Euphorbia milli) to Chromium and its Remediation.
    Ramana S; Biswas AK; Singh AB; Ajay ; Ahirwar NK; Subba Rao A
    Int J Phytoremediation; 2015; 17(1-6):363-8. PubMed ID: 25409249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Chromium from Soils Cultivated with Maize (Zea Mays) After the Addition of Natural Minerals as Soil Amendments.
    Μolla A; Ioannou Z; Mollas S; Skoufogianni E; Dimirkou A
    Bull Environ Contam Toxicol; 2017 Mar; 98(3):347-352. PubMed ID: 28233031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and translocation of benzo[a]pyrene (B[a]P) in two ornamental plants and dissipation in soil.
    Sun Y; Zhou Q
    Ecotoxicol Environ Saf; 2016 Feb; 124():74-81. PubMed ID: 26476328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of
    Salimizadeh M; Shirvani M; Shariatmadari H; Mortazavi MS
    Int J Phytoremediation; 2020; 22(2):176-183. PubMed ID: 31424289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Zea mays L. in phytoremediation of trichloroethylene.
    Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.