These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 25917852)
1. Nitric oxide inhibits the pannexin 1 channel through a cGMP-PKG dependent pathway. Poornima V; Vallabhaneni S; Mukhopadhyay M; Bera AK Nitric Oxide; 2015 May; 47():77-84. PubMed ID: 25917852 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells. Hasebe M; Yoshino M J Neurophysiol; 2016 Jun; 115(6):3174-85. PubMed ID: 26984419 [TBL] [Abstract][Full Text] [Related]
4. Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Iα autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. Wong JC; Fiscus RR J Cell Biochem; 2011 Mar; 112(3):829-39. PubMed ID: 21328456 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide stimulates a large-conductance Ca-activated K+ channel in human skin fibroblasts through protein kinase G pathway. Lim I; Yun J; Kim S; Lee C; Seo S; Kim T; Bang H Skin Pharmacol Physiol; 2005; 18(6):279-87. PubMed ID: 16145282 [TBL] [Abstract][Full Text] [Related]
7. Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. González DR; Fernández IC; Ordenes PP; Treuer AV; Eller G; Boric MP Nitric Oxide; 2008 May; 18(3):157-67. PubMed ID: 18023373 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism. Núñez L; Vaquero M; Gómez R; Caballero R; Mateos-Cáceres P; Macaya C; Iriepa I; Gálvez E; López-Farré A; Tamargo J; Delpón E Cardiovasc Res; 2006 Oct; 72(1):80-9. PubMed ID: 16876149 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide stimulates IP3 production via a cGMP/ PKG-dependent pathway in rat pancreatic acinar cells. Moustafa A; Sakamoto KQ; Habara Y Jpn J Vet Res; 2011 Feb; 59(1):5-14. PubMed ID: 21476485 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Shen J; Harada N; Nakazawa H; Yamashita T Eur J Neurosci; 2005 Jun; 21(11):2912-22. PubMed ID: 15978003 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain. Kosakai K; Tsujiuchi Y; Yoshino M J Insect Physiol; 2015 Jul; 78():26-32. PubMed ID: 25934217 [TBL] [Abstract][Full Text] [Related]
12. Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. Takahashi S; Lin H; Geshi N; Mori Y; Kawarabayashi Y; Takami N; Mori MX; Honda A; Inoue R J Physiol; 2008 Sep; 586(17):4209-23. PubMed ID: 18617565 [TBL] [Abstract][Full Text] [Related]
13. Effect of nitric oxide-cGMP-dependent protein kinase activation on advanced glycation end-product-induced proliferation in renal fibroblasts. Huang JS; Chuang LY; Guh JY; Chen CJ; Yang YL; Chiang TA; Hung MY; Liao TN J Am Soc Nephrol; 2005 Aug; 16(8):2318-29. PubMed ID: 15958724 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells. Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide inhibits basolateral 10-pS Cl Wu P; Gao Z; Ye S; Qi Z Am J Physiol Renal Physiol; 2016 Apr; 310(8):F755-F762. PubMed ID: 26764200 [TBL] [Abstract][Full Text] [Related]
16. The NO/sGC/PKG signaling pathway in the NAc shell is necessary for the acquisition of morphine-induced place preference. Shen F; Wang N; Qi C; Li YJ; Cui CL Behav Neurosci; 2014 Aug; 128(4):446-59. PubMed ID: 25046820 [TBL] [Abstract][Full Text] [Related]
17. Phasic cardiovascular responses to mevinphos are mediated through differential activation of cGMP/PKG cascade and peroxynitrite via nitric oxide generated in the rat rostral ventrolateral medulla by NOS I and II isoforms. Chan JY; Chan SH; Li FC; Tsai CY; Cheng HL; Chang AY Neuropharmacology; 2005 Jan; 48(1):161-72. PubMed ID: 15617736 [TBL] [Abstract][Full Text] [Related]
18. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Gorbe A; Giricz Z; Szunyog A; Csont T; Burley DS; Baxter GF; Ferdinandy P Basic Res Cardiol; 2010 Sep; 105(5):643-50. PubMed ID: 20349314 [TBL] [Abstract][Full Text] [Related]
19. Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Sun J; Aponte AM; Kohr MJ; Tong G; Steenbergen C; Murphy E Free Radic Biol Med; 2013 Jan; 54():105-12. PubMed ID: 22989471 [TBL] [Abstract][Full Text] [Related]
20. The stimulating effects of nitric oxide on intermediate conductance Ca²⁺-activated K⁺ channels in human dermal fibroblasts through PKG pathways but not the PKA pathways. Bae H; Lee HJ; Kim K; Kim JH; Kim T; Ko JH; Bang H; Lim I Chin J Physiol; 2014 Jun; 57(3):137-51. PubMed ID: 24826782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]