These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25917863)

  • 21. Individual variation in avian reproductive physiology does not reliably predict variation in laying date.
    Schaper SV; Dawson A; Sharp PJ; Caro SP; Visser ME
    Gen Comp Endocrinol; 2012 Oct; 179(1):53-62. PubMed ID: 22884573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circulating breeding and pre-breeding prolactin and LH are not associated with clutch size in the zebra finch (Taeniopygia guttata).
    Ryan CP; Dawson A; Sharp PJ; Meddle SL; Williams TD
    Gen Comp Endocrinol; 2014 Jun; 202():26-34. PubMed ID: 24768674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early-developmental stress, repeatability, and canalization in a suite of physiological and behavioral traits in female zebra finches.
    Careau V; Buttemer WA; Buchanan KL
    Integr Comp Biol; 2014 Oct; 54(4):539-54. PubMed ID: 24966164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch.
    Prior NH; Soma KK
    Horm Behav; 2015 Nov; 76():11-22. PubMed ID: 25935729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sex steroid profiles in zebra finches: Effects of reproductive state and domestication.
    Prior NH; Yap KN; Mainwaring MC; Adomat HH; Crino OL; Ma C; Guns ES; Griffith SC; Buchanan KL; Soma KK
    Gen Comp Endocrinol; 2017 Apr; 244():108-117. PubMed ID: 26899721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioural and physiological effects of population density on domesticated Zebra Finches (Taeniopygia guttata) held in aviaries.
    Poot H; ter Maat A; Trost L; Schwabl I; Jansen RF; Gahr M
    Physiol Behav; 2012 Feb; 105(3):821-8. PubMed ID: 22037197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of food supply on reproductive hormones and timing of reproduction in an income-breeding seabird.
    Whelan S; Hatch SA; Benowitz-Fredericks ZM; Parenteau C; Chastel O; Elliott KH
    Horm Behav; 2021 Jan; 127():104874. PubMed ID: 33191199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cue hierarchies and testicular development: is food a more potent stimulus than day length in an opportunistic breeder (Taeniopygia g. guttata)?
    Perfito N; Kwong JM; Bentley GE; Hau M
    Horm Behav; 2008 Apr; 53(4):567-72. PubMed ID: 18295766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kin recognition and adjustment of reproductive effort in zebra finches.
    Arct A; Rutkowska J; Martyka R; Drobniak SM; Cichon M
    Biol Lett; 2010 Dec; 6(6):762-4. PubMed ID: 20573618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata).
    Lynn SE; Perfito N; Guardado D; Bentley GE
    Gen Comp Endocrinol; 2015 May; 215():1-9. PubMed ID: 25849310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental manipulation of maternal corticosterone: Hormone transfer to the yolk in the zebra finch Taeniopygia guttata.
    Miltiadous A; Buchanan KL
    Gen Comp Endocrinol; 2021 Nov; 313():113898. PubMed ID: 34492223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of timed food availability on reproduction and metabolism in zebra finches: Molecular insights into homeostatic adaptation to food-restriction in diurnal vertebrates.
    Prabhat A; Batra T; Kumar V
    Horm Behav; 2020 Sep; 125():104820. PubMed ID: 32710887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of plasma testosterone, corticosterone, and metabolites in response to stress, reproductive stage, and social challenges in a desert male songbird.
    Deviche P; Beouche-Helias B; Davies S; Gao S; Lane S; Valle S
    Gen Comp Endocrinol; 2014 Jul; 203():120-31. PubMed ID: 24518569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive specialization, conditional plasticity and phylogenetic history in the reproductive cue response systems of birds.
    Hahn TP; MacDougall-Shackleton SA
    Philos Trans R Soc Lond B Biol Sci; 2008 Jan; 363(1490):267-86. PubMed ID: 17686737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-breeding energetic management in a mixed-strategy breeder.
    Hennin HL; Legagneux P; Bêty J; Williams TD; Gilchrist HG; Baker TM; Love OP
    Oecologia; 2015 Jan; 177(1):235-43. PubMed ID: 25411112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive plasticity in mate preference linked to differences in reproductive effort.
    Qvarnström A; Pärt T; Sheldon BC
    Nature; 2000 May; 405(6784):344-7. PubMed ID: 10830962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Timing of breeding in variable environments: tropical birds as model systems.
    Hau M
    Horm Behav; 2001 Sep; 40(2):281-90. PubMed ID: 11534993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolactin is related to individual differences in parental behavior and reproductive success in a biparental passerine, the zebra finch (Taeniopygia guttata).
    Smiley KO; Adkins-Regan E
    Gen Comp Endocrinol; 2016 Aug; 234():88-94. PubMed ID: 26965952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Personality in captivity: more exploratory males reproduce better in an aviary population.
    McCowan LS; Rollins LA; Griffith SC
    Behav Processes; 2014 Sep; 107():150-7. PubMed ID: 25173618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in female reproductive tract morphology across the reproductive cycle in the zebra finch.
    Hurley LL; Crino OL; Rowe M; Griffith SC
    PeerJ; 2020; 8():e10195. PubMed ID: 33240602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.