BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25918022)

  • 21. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces.
    Secchi E; Vitale A; Miño GL; Kantsler V; Eberl L; Rusconi R; Stocker R
    Nat Commun; 2020 Jun; 11(1):2851. PubMed ID: 32503979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid shear contributions to bacteria cell detachment initiated by a monoclonal antibody.
    Mascari L; Ymele-Leki P; Eggleton CD; Speziale P; Ross JM
    Biotechnol Bioeng; 2003 Jul; 83(1):65-74. PubMed ID: 12740934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers.
    Khan MM; Ista LK; Lopez GP; Schuler AJ
    Environ Sci Technol; 2011 Feb; 45(3):1055-60. PubMed ID: 21189005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp.
    Feng G; Cheng Y; Wang SY; Hsu LC; Feliz Y; Borca-Tasciuc DA; Worobo RW; Moraru CI
    Biofouling; 2014; 30(10):1253-68. PubMed ID: 25427545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid.
    Yazdi S; Ardekani AM; Borhan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043002. PubMed ID: 25375589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli.
    Thomas WE; Nilsson LM; Forero M; Sokurenko EV; Vogel V
    Mol Microbiol; 2004 Sep; 53(5):1545-57. PubMed ID: 15387828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties.
    Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamic entrapment of bacteria swimming near a solid surface.
    Giacché D; Ishikawa T; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056309. PubMed ID: 21230578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.
    Zhang Z; Christopher G
    Langmuir; 2016 Mar; 32(11):2724-30. PubMed ID: 26943272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime.
    Zorzano MP; Hochberg D; Cuevas MT; Gómez-Gómez JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031908. PubMed ID: 15903460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swimming in circles: motion of bacteria near solid boundaries.
    Lauga E; DiLuzio WR; Whitesides GM; Stone HA
    Biophys J; 2006 Jan; 90(2):400-12. PubMed ID: 16239332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber.
    McClaine JW; Ford RM
    Biotechnol Bioeng; 2002 Apr; 78(2):179-89. PubMed ID: 11870609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms.
    Chambless JD; Stewart PS
    Biotechnol Bioeng; 2007 Aug; 97(6):1573-84. PubMed ID: 17274065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring and modeling the oxygen profile in a nitrifying Moving Bed Biofilm Reactor.
    Masić A; Bengtsson J; Christensson M
    Math Biosci; 2010 Sep; 227(1):1-11. PubMed ID: 20580728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical models for motile bacterial transport in cylindrical tubes.
    Chen KC; Ford RM; Cummings PT
    J Theor Biol; 1998 Dec; 195(4):481-504. PubMed ID: 9837704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces.
    Janjaroen D; Ling FQ; Monroy G; Derlon N; Morgenroth E; Boppart SA; Liu WT; Nguyen TH
    Water Res; 2013 May; 47(7):2531-42. PubMed ID: 23497979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.