These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25918022)

  • 41. Unsteady turbulent boundary layers in swimming rainbow trout.
    Yanase K; Saarenrinne P
    J Exp Biol; 2015 May; 218(Pt 9):1373-85. PubMed ID: 25750412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biofilm deformation in response to fluid flow in capillaries.
    Vo GD; Heys J
    Biotechnol Bioeng; 2011 Aug; 108(8):1893-9. PubMed ID: 21437881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Confined Flow: Consequences and Implications for Bacteria and Biofilms.
    Conrad JC; Poling-Skutvik R
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():175-200. PubMed ID: 29561646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream.
    Hill J; Kalkanci O; McMurry JL; Koser H
    Phys Rev Lett; 2007 Feb; 98(6):068101. PubMed ID: 17358984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV; Melnikov VR; Sloot PMA
    J Theor Biol; 2019 Dec; 482():109994. PubMed ID: 31487498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Counterclockwise circular motion of bacteria swimming at the air-liquid interface.
    Lemelle L; Palierne JF; Chatre E; Place C
    J Bacteriol; 2010 Dec; 192(23):6307-8. PubMed ID: 20889751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.
    Pegalajar-Jurado A; Easton CD; Crawford RJ; McArthur SL
    Biointerphases; 2015 Mar; 10(1):011002. PubMed ID: 25720764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial cell attachment, the beginning of a biofilm.
    Palmer J; Flint S; Brooks J
    J Ind Microbiol Biotechnol; 2007 Sep; 34(9):577-88. PubMed ID: 17619090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A combined rheometry and imaging study of viscosity reduction in bacterial suspensions.
    Martinez VA; Clément E; Arlt J; Douarche C; Dawson A; Schwarz-Linek J; Creppy AK; Škultéty V; Morozov AN; Auradou H; Poon WCK
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2326-2331. PubMed ID: 31964833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers.
    Griffa M; Ferdowsi B; Guyer RA; Daub EG; Johnson PA; Marone C; Carmeliet J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012205. PubMed ID: 23410324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-fluid model of biofilm disinfection.
    Cogan NG
    Bull Math Biol; 2008 Apr; 70(3):800-19. PubMed ID: 18071827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling physiological resistance in bacterial biofilms.
    Cogan NG; Cortez R; Fauci L
    Bull Math Biol; 2005 Jul; 67(4):831-53. PubMed ID: 15893555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM; Caizza NC; Zegans ME; O'Toole GA
    Res Microbiol; 2007 Jun; 158(5):471-7. PubMed ID: 17533122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A mathematical model for fluid shear-sensitive 3D tissue construct development.
    Liu D; Chua CK; Leong KF
    Biomech Model Mechanobiol; 2013 Jan; 12(1):19-31. PubMed ID: 22314710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rehinging biflagellar locomotion in a viscous fluid.
    Spagnolie SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046323. PubMed ID: 19905452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy.
    Cao T; Tang H; Liang X; Wang A; Auner GW; Salley SO; Ng KY
    Biotechnol Bioeng; 2006 May; 94(1):167-76. PubMed ID: 16538682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.