BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25918123)

  • 1. Inner workings and biological impact of phospholipid flippases.
    Panatala R; Hennrich H; Holthuis JC
    J Cell Sci; 2015 Jun; 128(11):2021-32. PubMed ID: 25918123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid flippases: building asymmetric membranes and transport vesicles.
    Sebastian TT; Baldridge RD; Xu P; Graham TR
    Biochim Biophys Acta; 2012 Aug; 1821(8):1068-77. PubMed ID: 22234261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of phospholipid flippases.
    Tanaka K; Fujimura-Kamada K; Yamamoto T
    J Biochem; 2011 Feb; 149(2):131-43. PubMed ID: 21134888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the transmembrane phospholipid distribution in eukaryotic cells by aminophospholipid translocase.
    Devaux PF; Zachowski A; Morrot G; Cribier S; Fellmann P; Geldwerth D; Bitbol M; Herve P
    Biotechnol Appl Biochem; 1990 Oct; 12(5):517-22. PubMed ID: 2288706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane.
    Tanaka Y; Ono N; Shima T; Tanaka G; Katoh Y; Nakayama K; Takatsu H; Shin HW
    Mol Biol Cell; 2016 Dec; 27(24):3883-3893. PubMed ID: 27733620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast.
    Yamamoto T; Fujimura-Kamada K; Shioji E; Suzuki R; Tanaka K
    G3 (Bethesda); 2017 Jan; 7(1):179-192. PubMed ID: 28057802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.
    Takeda M; Yamagami K; Tanaka K
    Eukaryot Cell; 2014 Mar; 13(3):363-75. PubMed ID: 24390140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.
    Yamagami K; Yamamoto T; Sakai S; Mioka T; Sano T; Igarashi Y; Tanaka K
    PLoS One; 2015; 10(3):e0120108. PubMed ID: 25781026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes.
    Natarajan P; Graham TR
    Methods; 2006 Jun; 39(2):163-8. PubMed ID: 16828307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions.
    Miyasaka M; Mioka T; Kishimoto T; Itoh E; Tanaka K
    PLoS One; 2020; 15(7):e0236520. PubMed ID: 32730286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid flippases in membrane remodeling and transport carrier biogenesis.
    Best JT; Xu P; Graham TR
    Curr Opin Cell Biol; 2019 Aug; 59():8-15. PubMed ID: 30897446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport mechanism of P4 ATPase lipid flippases.
    López-Marqués RL; Gourdon P; Günther Pomorski T; Palmgren M
    Biochem J; 2020 Oct; 477(19):3769-3790. PubMed ID: 33045059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of lipid asymmetry: the flip side of ion transport.
    Lenoir G; Williamson P; Holthuis JC
    Curr Opin Chem Biol; 2007 Dec; 11(6):654-61. PubMed ID: 17981493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding P4-ATPase substrate interactions.
    Roland BP; Graham TR
    Crit Rev Biochem Mol Biol; 2016; 51(6):513-527. PubMed ID: 27696908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of lipid scramblases in regulating lipid distributions at cellular membranes.
    Wang Y; Kinoshita T
    Biochem Soc Trans; 2023 Oct; 51(5):1857-1869. PubMed ID: 37767549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport.
    Montigny C; Lyons J; Champeil P; Nissen P; Lenoir G
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):767-783. PubMed ID: 26747647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells.
    Mousley CJ; Trettin KD; Tyeryar K; Ile KE; Schaaf G; Bankaitis VA
    Adv Enzyme Regul; 2010; 50(1):339-48. PubMed ID: 20005891
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.