These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25918138)

  • 41. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo.
    Hengzhuang W; Høiby N; Ciofu O
    Methods Mol Biol; 2014; 1147():239-54. PubMed ID: 24664838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction between tobramycin and CSA-13 on clinical isolates of Pseudomonas aeruginosa in a model of young and mature biofilms.
    Nagant C; Tré-Hardy M; El-Ouaaliti M; Savage P; Devleeschouwer M; Dehaye JP
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):251-63. PubMed ID: 20625718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.
    Nithya C; Begum MF; Pandian SK
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):341-58. PubMed ID: 20665017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of clonal strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Ontario, Canada.
    Beaudoin T; Aaron SD; Giesbrecht-Lewis T; Vandemheen K; Mah TF
    Can J Microbiol; 2010 Jul; 56(7):548-57. PubMed ID: 20651854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions.
    McCaughey G; McKevitt M; Elborn JS; Tunney MM
    J Cyst Fibros; 2012 May; 11(3):163-72. PubMed ID: 22138067
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast Biofilm Penetration and Anti-PAO1 Activity of Nebulized Azithromycin in Nanoarchaeosomes.
    Altube MJ; Martínez MMB; Malheiros B; Maffía PC; Barbosa LRS; Morilla MJ; Romero EL
    Mol Pharm; 2020 Jan; 17(1):70-83. PubMed ID: 31617725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mathematical corrections for bacterial loss in pharmacodynamic in vitro dilution models.
    Keil S; Wiedemann B
    Antimicrob Agents Chemother; 1995 May; 39(5):1054-8. PubMed ID: 7625788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation.
    Qian Z; Stoodley P; Pitt WG
    Biomaterials; 1996 Oct; 17(20):1975-80. PubMed ID: 8894091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions.
    Zhi J; Nightingale CH; Quintiliani R
    J Pharm Sci; 1986 Nov; 75(11):1063-7. PubMed ID: 3102718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin.
    Yau KPS; Murphy AB; Zhong L; Mai-Prochnow A
    PLoS One; 2018; 13(10):e0206530. PubMed ID: 30365553
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antimicrobial strategies effective against infectious bacterial biofilms.
    Simões M
    Curr Med Chem; 2011; 18(14):2129-45. PubMed ID: 21517762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pseudomonas aeruginosa and Saccharomyces cerevisiae biofilm in flow cells.
    Weiss Nielsen M; Sternberg C; Molin S; Regenberg B
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial Cell Cultures in a Lab-on-a-Disc: A Simple and Versatile Tool for Quantification of Antibiotic Treatment Efficacy.
    Serioli L; Laksafoss TZ; Haagensen JAJ; Sternberg C; Soerensen MP; Molin S; Zór K; Boisen A
    Anal Chem; 2020 Oct; 92(20):13871-13879. PubMed ID: 32962340
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In Vitro Studies on a Microfluidic Sensor with Embedded Obstacles Using New Antibacterial Synthetic Compounds (1-TDPPO) Mixed Prop-2-en-1-one with Difluoro Phenyl.
    Roh C; Lee J; Kinger M; Kang C
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28397751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of antimicrobial activity against biofilms.
    Drake D
    Methods Enzymol; 2001; 337():385-9. PubMed ID: 11398444
    [No Abstract]   [Full Text] [Related]  

  • 56. Possible approaches to the simulation of antibiotic kinetics and the determination of antibacterial activity in vitro.
    Tosch W; Schnell R
    J Antimicrob Chemother; 1985 Jan; 15 Suppl A():117-20. PubMed ID: 3980322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The MBEC Assay System: multiple equivalent biofilms for antibiotic and biocide susceptibility testing.
    Ceri H; Olson M; Morck D; Storey D; Read R; Buret A; Olson B
    Methods Enzymol; 2001; 337():377-85. PubMed ID: 11398443
    [No Abstract]   [Full Text] [Related]  

  • 58. Kill kinetics and regrowth pattern of bacteria exposed to antibiotic concentrations simulating those observed in vivo.
    Guggenbichler JP; Semenitz E; König P
    J Antimicrob Chemother; 1985 Jan; 15 Suppl A():139-46. PubMed ID: 3980325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence of bacterial adaptation to monochloramine in Pseudomonas aeruginosa biofilms and evaluation of biocide action model.
    Sanderson SS; Stewart PS
    Biotechnol Bioeng; 1997 Oct; 56(2):201-9. PubMed ID: 18636625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two compartment kinetic model with multiple artificial capillary units.
    Blaser J; Stone BB; Zinner SH
    J Antimicrob Chemother; 1985 Jan; 15 Suppl A():131-7. PubMed ID: 3980324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.