BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25918145)

  • 1. Meropenem and chromacef intermediates observed in IMP-25 metallo-β-lactamase-catalyzed hydrolysis.
    Oelschlaeger P; Aitha M; Yang H; Kang JS; Zhang AL; Liu EM; Buynak JD; Crowder MW
    Antimicrob Agents Chemother; 2015 Jul; 59(7):4326-30. PubMed ID: 25918145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of Asp-120(81) of metallo-beta-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography.
    Yamaguchi Y; Kuroki T; Yasuzawa H; Higashi T; Jin W; Kawanami A; Yamagata Y; Arakawa Y; Goto M; Kurosaki H
    J Biol Chem; 2005 May; 280(21):20824-32. PubMed ID: 15788415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallo-β-lactamase-catalyzed hydrolysis of cephalosporins: some mechanistic insights into the effect of heterocyclic thiones on enzyme activity.
    Tamilselvi A; Mugesh G
    Inorg Chem; 2011 Feb; 50(3):749-56. PubMed ID: 21210647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis.
    Feng H; Liu X; Wang S; Fleming J; Wang DC; Liu W
    Nat Commun; 2017 Dec; 8(1):2242. PubMed ID: 29269938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mechanism of hydrolysis of therapeutic beta-lactams by Stenotrophomonas maltophilia L1 metallo-beta-lactamase.
    Spencer J; Clarke AR; Walsh TR
    J Biol Chem; 2001 Sep; 276(36):33638-44. PubMed ID: 11443136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of cephalexin and meropenem by New Delhi metallo-β-lactamase: the substrate protonation mechanism is drug dependent.
    Das CK; Nair NN
    Phys Chem Chem Phys; 2017 May; 19(20):13111-13121. PubMed ID: 28489087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
    Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O
    J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.
    Zhu K; Lu J; Liang Z; Kong X; Ye F; Jin L; Geng H; Chen Y; Zheng M; Jiang H; Li JQ; Luo C
    J Comput Aided Mol Des; 2013 Mar; 27(3):247-56. PubMed ID: 23456591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1).
    Ayipo YO; Ahmad I; Alananzeh W; Lawal A; Patel H; Mordi MN
    J Biomol Struct Dyn; 2023 Nov; 41(19):10096-10116. PubMed ID: 36476097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1.
    Yang H; Aitha M; Hetrick AM; Richmond TK; Tierney DL; Crowder MW
    Biochemistry; 2012 May; 51(18):3839-47. PubMed ID: 22482529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis.
    Wang Z; Fast W; Benkovic SJ
    Biochemistry; 1999 Aug; 38(31):10013-23. PubMed ID: 10433708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
    LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262.
    Pegg KM; Liu EM; George AC; LaCuran AE; Bethel CR; Bonomo RA; Oelschlaeger P
    Protein Sci; 2014 Oct; 23(10):1451-60. PubMed ID: 25131397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mutagenic Analysis of Metallo-β-Lactamase IMP-18.
    Furuyama T; Nonomura H; Ishii Y; Hanson ND; Shimizu-Ibuka A
    Antimicrob Agents Chemother; 2016 Sep; 60(9):5521-6. PubMed ID: 27381398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sequence-activity relationship between metallo-β-lactamases IMP-1, IMP-6, and IMP-25 suggests an evolutionary adaptation to meropenem exposure.
    Liu EM; Pegg KM; Oelschlaeger P
    Antimicrob Agents Chemother; 2012 Dec; 56(12):6403-6. PubMed ID: 23006757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-beta-lactamase from Bacteroides fragilis.
    Fast W; Wang Z; Benkovic SJ
    Biochemistry; 2001 Feb; 40(6):1640-50. PubMed ID: 11327823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMP-51, a novel IMP-type metallo-β-lactamase with increased doripenem- and meropenem-hydrolyzing activities, in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate.
    Tada T; Nhung PH; Miyoshi-Akiyama T; Shimada K; Phuong DM; Anh NQ; Ohmagari N; Kirikae T
    Antimicrob Agents Chemother; 2015 Nov; 59(11):7090-3. PubMed ID: 26282421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural characterization of the subclass B1 metallo-β-lactamase VIM-4.
    Lassaux P; Traoré DA; Loisel E; Favier A; Docquier JD; Sohier JS; Laurent C; Bebrone C; Frère JM; Ferrer JL; Galleni M
    Antimicrob Agents Chemother; 2011 Mar; 55(3):1248-55. PubMed ID: 21149620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel IMP-1 metallo-beta-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1.
    Moloughney JG; D Thomas J; Toney JH
    FEMS Microbiol Lett; 2005 Feb; 243(1):65-71. PubMed ID: 15668002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in silico approach for understanding the molecular evolution of clinically important metallo-beta-lactamases.
    Pal A; Tripathi A
    Infect Genet Evol; 2013 Dec; 20():39-47. PubMed ID: 23954421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.