BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25918167)

  • 1. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models.
    Spiliopoulou A; Nagy R; Bermingham ML; Huffman JE; Hayward C; Vitart V; Rudan I; Campbell H; Wright AF; Wilson JF; Pong-Wong R; Agakov F; Navarro P; Haley CS
    Hum Mol Genet; 2015 Jul; 24(14):4167-82. PubMed ID: 25918167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic prediction of quantitative lipid traits: comparing shrinkage models to gene scores.
    Warren H; Casas JP; Hingorani A; Dudbridge F; Whittaker J
    Genet Epidemiol; 2014 Jan; 38(1):72-83. PubMed ID: 24272946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Prediction Using Individual-Level Data and Summary Statistics from Multiple Populations.
    Vandenplas J; Calus MPL; Gorjanc G
    Genetics; 2018 Sep; 210(1):53-69. PubMed ID: 30021793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations.
    Kizilkaya K; Fernando RL; Garrick DJ
    Genet Sel Evol; 2014 Jun; 46(1):37. PubMed ID: 24912924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-parametric Polygenic Risk Prediction via Partitioned GWAS Summary Statistics.
    Chun S; Imakaev M; Hui D; Patsopoulos NA; Neale BM; Kathiresan S; Stitziel NO; Sunyaev SR
    Am J Hum Genet; 2020 Jul; 107(1):46-59. PubMed ID: 32470373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat.
    Ali M; Zhang Y; Rasheed A; Wang J; Zhang L
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes.
    Chung W; Chen J; Turman C; Lindstrom S; Zhu Z; Loh PR; Kraft P; Liang L
    Nat Commun; 2019 Feb; 10(1):569. PubMed ID: 30718517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of high-dimensional feature selection: evaluation for genomic prediction in man.
    Bermingham ML; Pong-Wong R; Spiliopoulou A; Hayward C; Rudan I; Campbell H; Wright AF; Wilson JF; Agakov F; Navarro P; Haley CS
    Sci Rep; 2015 May; 5():10312. PubMed ID: 25988841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Across-cohort QC analyses of GWAS summary statistics from complex traits.
    Chen GB; Lee SH; Robinson MR; Trzaskowski M; Zhu ZX; Winkler TW; Day FR; Croteau-Chonka DC; Wood AR; Locke AE; Kutalik Z; Loos RJF; Frayling TM; Hirschhorn JN; Yang J; Wray NR; ; Visscher PM
    Eur J Hum Genet; 2016 Jan; 25(1):137-146. PubMed ID: 27552965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei.
    Wang Q; Yu Y; Yuan J; Zhang X; Huang H; Li F; Xiang J
    BMC Genet; 2017 May; 18(1):45. PubMed ID: 28514941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster.
    Edwards SM; Sørensen IF; Sarup P; Mackay TF; Sørensen P
    Genetics; 2016 Aug; 203(4):1871-83. PubMed ID: 27235308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection.
    Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ
    J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers.
    Shepherd RK; Meuwissen TH; Woolliams JA
    BMC Bioinformatics; 2010 Oct; 11():529. PubMed ID: 20969788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea).
    Dong L; Xiao S; Wang Q; Wang Z
    BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.