BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 25918408)

  • 1. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria.
    Banerjee PS; Ma J; Hart GW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6050-5. PubMed ID: 25918408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity.
    Narayanan B; Sinha P; Henry R; Reeves RA; Paolocci N; Kohr MJ; Zachara NE
    J Biol Chem; 2023 Dec; 299(12):105447. PubMed ID: 37949223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excessive
    Umapathi P; Mesubi OO; Banerjee PS; Abrol N; Wang Q; Luczak ED; Wu Y; Granger JM; Wei AC; Reyes Gaido OE; Florea L; Talbot CC; Hart GW; Zachara NE; Anderson ME
    Circulation; 2021 Apr; 143(17):1687-1703. PubMed ID: 33593071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex.
    Lu P; Liu Y; He M; Cao T; Yang M; Qi S; Yu H; Gao H
    Nat Commun; 2023 Oct; 14(1):6952. PubMed ID: 37907462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocked O-GlcNAc cycling alters mitochondrial morphology, function, and mass.
    Akinbiyi EO; Abramowitz LK; Bauer BL; Stoll MSK; Hoppel CL; Hsiao CP; Hanover JA; Mears JA
    Sci Rep; 2021 Nov; 11(1):22106. PubMed ID: 34764359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes.
    Ngoh GA; Watson LJ; Facundo HT; Jones SP
    Amino Acids; 2011 Mar; 40(3):895-911. PubMed ID: 20798965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2.
    Champattanachai V; Marchase RB; Chatham JC
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1509-20. PubMed ID: 18367586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart.
    Packer M
    Eur J Heart Fail; 2023 Aug; 25(8):1199-1212. PubMed ID: 37434410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy.
    Papanicolaou KN; Jung J; Ashok D; Zhang W; Modaressanavi A; Avila E; Foster DB; Zachara NE; O'Rourke B
    J Biol Chem; 2023 Mar; 299(3):102907. PubMed ID: 36642184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation.
    Sunden M; Upadhyay D; Banerjee R; Sipari N; Fellman V; Kallijärvi J; Purhonen J
    Cell Rep Methods; 2023 Jul; 3(7):100518. PubMed ID: 37533645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein O-GlcNAcylation in cardiovascular diseases.
    Wang HF; Wang YX; Zhou YP; Wei YP; Yan Y; Zhang ZJ; Jing ZC
    Acta Pharmacol Sin; 2023 Jan; 44(1):8-18. PubMed ID: 35817809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer.
    Hu CW; Xie J; Jiang J
    Cancers (Basel); 2022 Oct; 14(20):. PubMed ID: 36291918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose deprivation-induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium-dependent.
    Zou L; Zhu-Mauldin X; Marchase RB; Paterson AJ; Liu J; Yang Q; Chatham JC
    J Biol Chem; 2012 Oct; 287(41):34419-31. PubMed ID: 22908225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-GlcNAcylation of RBM14 contributes to elevated cellular O-GlcNAc through regulation of OGA protein stability.
    Kweon TH; Jung H; Ko JY; Kang J; Kim W; Kim Y; Kim HB; Yi EC; Ku NO; Cho JW; Yang WH
    Cell Rep; 2024 Apr; 43(5):114163. PubMed ID: 38678556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained Increases in Cardiomyocyte Protein
    Ha CM; Bakshi S; Brahma MK; Potter LA; Chang SF; Sun Z; Benavides GA; He L; Umbarkar P; Zou L; Curfman S; Sunny S; Paterson AJ; Rajasekaran NS; Barnes JW; Zhang J; Lal H; Xie M; Darley-Usmar VM; Chatham JC; Wende AR
    J Am Heart Assoc; 2023 Oct; 12(19):e029898. PubMed ID: 37750556
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Luanpitpong S; Tangkiettrakul K; Kang X; Srisook P; Poohadsuan J; Samart P; Klaihmon P; Janan M; Lorthongpanich C; Laowtammathron C; Issaragrisil S
    Front Cell Dev Biol; 2024; 12():1361943. PubMed ID: 38752196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts.
    Ma J; Banerjee P; Whelan SA; Liu T; Wei AC; Ramirez-Correa G; McComb ME; Costello CE; O'Rourke B; Murphy A; Hart GW
    J Proteome Res; 2016 Jul; 15(7):2254-64. PubMed ID: 27213235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased O-GlcNAcylation by Upregulation of Mitochondrial O-GlcNAc Transferase (mOGT) Inhibits the Activity of Respiratory Chain Complexes and Controls Cellular Bioenergetics.
    Jóźwiak P; Oracz J; Dziedzic A; Szelenberger R; Żyżelewicz D; Bijak M; Krześlak A
    Cancers (Basel); 2024 Mar; 16(5):. PubMed ID: 38473405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human and rodent temporal lobe epilepsy is characterized by changes in O-GlcNAc homeostasis that can be reversed to dampen epileptiform activity.
    Sánchez RG; Parrish RR; Rich M; Webb WM; Lockhart RM; Nakao K; Ianov L; Buckingham SC; Broadwater DR; Jenkins A; de Lanerolle NC; Cunningham M; Eid T; Riley K; Lubin FD
    Neurobiol Dis; 2019 Apr; 124():531-543. PubMed ID: 30625365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characterization of recombinant enzymes of O-GlcNAc cycling.
    Kim EJ; Hanover JA
    Methods Mol Biol; 2013; 1022():129-45. PubMed ID: 23765659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.